
TiXML3-EN

TiXML Reference Manual
for Tixi Alarm Modem

HM100/400
HG100/400

 Tixi Data Gateway
HW100/400
HE100/400

and Tixi.Gate 600 Series

V 3.2
© 2012 Tixi.Com GmbH, Berlin

Publication close: 29. June 2012. Supported Tixi Device Firmware: 3.2.0.52
This manual is protected by copyright. Any further sale is prohibited without the consent of the
publisher. This applies in particular to copies, translations, microfilm copies and the storage and
processing on electronic data-processing systems.

Various registered trademarks, company names and brand names appear in this manual. Even if they
are not designated as such, the relevant proprietary rights still apply.

TiXML Reference Manual

 2

1 OVERVIEW ... 5

2 CONTROLLING A TIXI DEVICE ... 7
2.1 OVERVIEW ... 7
2.2 RS232 COMMUNICATION PARAMETERS ... 7
2.3 COMMUNICATION MODE .. 7
2.4 TIXML - CONTROL PROTOCOL (TIXML)... 7

2.4.1 Overview ... 7
2.4.2 Framing... 8
2.4.3 Command Encoding.. 8
2.4.4 Error Frame.. 11
2.4.5 Error codes ... 14
2.4.6 Commands... 15

2.4.6.1 Device control .. 15
2.4.6.2 Authentication .. 20
2.4.6.3 Event processing... 23
2.4.6.4 Configuration ... 27
2.4.6.5 Process values .. 30
2.4.6.6 Logging .. 35

2.5 TIXML ON SD-CARD... 39
3 MAIN XML DATABASES ... 41

3.1 INTRODUCTION... 41
3.1.1 References ... 41
3.1.2 Time parameters ... 42

3.2 DIALLING PROPERTIES OF THE LOCATION .. 42
3.2.1 How the Modem dials ... 44

3.3 DEVICE'S USER DATA... 46
3.4 ADDRESS BOOK.. 48
3.5 INTERNET ACCESS (ISP)... 50
3.6 ACCESS RIGHTS .. 52
3.7 EVENT HANDLER.. 54

3.7.1 Commands... 55
3.7.2 Conditions ... 70
3.7.3 System events... 71

3.8 MESSAGE TEXT TEMPLATE .. 72
3.9 MESSAGE JOB TEMPLATE... 78
3.10 SMS PROVIDER.. 83
3.11 SERVICE CENTER FOR INCOMING SMS.. 84
3.12 AUTOMATIC TRANSMODE... 85
3.13 INTERNET-TIME SYNCHRONIZATION... 86
3.14 ETHERNET .. 88
3.15 WLAN... 89
3.16 TIXML/IP .. 92
3.17 WEBSERVER, PPP-SERVER, TFTP-SERVER.. 93

4 DATA LOGGING.. 93
4.1 LOGDEFINITION ... 93

4.1.1 LogFiles Group ... 93
4.1.1.1 SupportLog... 94

4.1.2 Records Group .. 94
4.2 EVENTLOGGING ... 97
4.3 LOGGING COMMANDS... 98
4.4 LOGFILE MEMORY CALCULATION... 100
4.5 READING AND CLEARING LOGFILES .. 100
4.6 SENDING AND FORMATTING LOG REPORTS ... 100

4.6.1 Predefined format tags.. 107
4.6.2 Sending logfiles as attachment.. 107

4.7 LOGFILE COUNTER ... 108

TiXML Reference Manual

 3

5 REMOTE CONTROL... 109
5.1 OVERVIEW ... 109
5.2 REMOTE CONTROL OF THE TIXI DEVICE... 109
5.3 REMOTE CONTROL OF AN ATTACHED DEVICE... 110

6 PROCESS I/O PORTS AND VARIABLES .. 111
6.1 INTRODUCTION... 111
6.2 EVENT STATES ... 112
6.3 PROCESS VARIABLES.. 113

6.3.1 RPN Instruction List.. 116
6.3.1.1 Logical instructions .. 117
6.3.1.2 Stack operations ... 125
6.3.1.3 Comparison instructions... 128
6.3.1.4 Math operations.. 133
6.3.1.5 Time instruction ... 136
6.3.1.6 Power-on/off delay instruction ... 137
6.3.1.7 IF instructions... 138
6.3.1.8 Text parser instruction.. 139
6.3.1.9 Bit mask instruction.. 140
6.3.1.10 FIND_BIT_ADDRESS instruction .. 141
6.3.1.11 FORTH instruction... 143

6.3.2 RPN Error Codes .. 143
6.4 ACCESS I/OS AND VARIABLES.. 143

6.4.1 Refer to variable values .. 143
6.4.2 Read variable values ... 144
6.4.3 Set outputs, Process- and PLC Variables ... 144

6.5 VARIABLE DATA TYPES AND FORMATS... 145
6.5.1 Variable data types ... 145
6.5.2 Variable data formats ... 146

6.6 ANALOG INPUT... 151
6.7 S0-INTERFACE.. 153
6.8 SIGNAL LED .. 156

7 SCHEDULER... 157
7.1 CONFIGURATION .. 157
7.2 TIME PARAMETERS ... 158
7.3 SCHEDULEDEFINITION ... 160
7.4 TESTING ... 161

8 SEQUENCER... 163
8.1 CONFIGURATION .. 163
8.2 CHANGING SEQUENCES .. 164

8.2.1 Profile priorities.. 166
8.3 TESTING ... 167
8.4 EXAMPLE ... 168

9 PROCESSING INCOMING MESSAGES .. 169
9.1 INTRODUCTION... 169
9.2 EVENT VIA INCOMING CALL (CALLERID).. 170
9.3 EVENT VIA INCOMING MESSAGE (EXPRESS-E-MAIL, SMS, EMAIL).. 170

9.3.1 Event paramater generated by an incoming message... 172
9.3.2 System events for invalid incoming messages ... 174
9.3.3 Receiving Express-E-Mail... 179
9.3.4 Receiving SMS (GSM and PSTN) ... 179
9.3.5 Collecting Internet emails (POP3).. 179

9.3.5.1 Email filter ... 180
9.3.6 Example... 180

9.3.6.1 Event Handler... 180
9.3.6.2 Message Job Templates for the answer messages .. 182

9.4 CONFIGURATION VIA EMAIL ... 183
9.5 AUTHENTICATION .. 184

TiXML Reference Manual

 4

10 TIXI DEVICE AND PLC / METER / FIELDBUS OPERATION.. 187

11 ADDRESSES OF SERIAL INTERFACES AND I/OS .. 188
11.1 BIT / BYTE / WORD / DWORD ADDRESSING OF I/OS .. 189

12 SYSTEM PROPERTIES... 191

13 PROJECT STRUCTURE AND CONNECTIONS... 197
13.1 EVENT HANDLER, SCHEDULER... 197
13.2 EVENT STATES, EXTERNAL, PROCESSVARS, SYSTEM-IOS ... 198
13.3 MESSAGEJOBTEMPLATES, USERTEMPLATES, ADDRESSBOOK ... 198
13.4 LOGFILES, RECORDS, EVENTLOGGING ... 199

14 FIRMWARE .. 200
14.1 REMOTE FIRMWARE UPDATE ... 200
14.2 COMPATIBILITY.. 200
14.3 FEATURE HISTORY ... 201

INDEX ... 203

TiXML Reference Manual

 5

1 Overview
The Tixi Alarm Modem / Tixi Data Gateway provides you with a completely new type of
communication device, which can be integrated into existing systems with ease.

The communication protocols of common PLCs are already implemented into the Tixi
Device, so there's no need to change the PLC or its programming. Other PLCs can control
the Tixi Device via simple text strings: the TiXML Commands.

Imagine this as a simple application of Tixi Alarm Modem:

The purpose of this manual is a reference for the features and functions of the Tixi Device.
A step-by-step guide for creating projects can be found in the “TiXML-Tutorial” which is
available on our website http://www.tixi.com.

The development of the Tixi Device firmware never end, therefore some of the described
features may not be available with your “older” hard- or firmware version. The cover tells you
which firmware is required to use all described features (Note “Supported Tixi Device
Firmware x.x.x”). See chapter 14.3 for a firmware history.

The TiXML-Reference for devices with firmware version older than 3.0 has the manual code
“TiXML-EN” and is also available on our website.

The following picture will help you to understand the processing and relation of all databases.

TiXML Reference Manual

 6

At first there is a “system to check" which may be a PLC connected via serial port or some
switches and measure instruments connected to the Tixi Device I/O-Ports.
The configuration of PLCs is documented in a separate “PLC TiXML Manual”.
The processing of I/Os or PLC variables is explained in chapter 6. A not supported PLC may
control the Tixi Device via TiXML-commands, e.g. the DoOn-Command to activate alarms
(see. Chapter 0)

The process “Event States" are defining what to do if a variable or I/O-port changes
(chapter 6.2). The condition for an event state can be configured in the event state itself, or
via “process variables" which offer some logical instructions (chapter 6.2).

As soon as an “Event Handler" (chapter 3.7) is triggered by an event state, the “Job
Generator" starts to process the event handler commands e.g. for logging data (chapter 4)
or creates a “Sendmail" job using the predefined text templates and address book contacts.
A “Message Job Template" (chapter 0) defines the message type (e.g. SMS) and refers to
the recipient from the address book (chapter 3.4) and the message templates (chapter
3.8).

Thereafter the “Job Server" starts to send the alarm message using the location (chapter
3.2) and user data (chapter 3.2) settings to calculate the number to dial. For email
messages the Internet Access (ISP) settings (chapter 3.5) are used to connect to the
internet mail servers. For SMS the database of SMS providers (chapter 3.10) is used.

TiXML Reference Manual

 7

2 Controlling a Tixi Device

2.1 Overview
The Tixi Device has a serial interface (RS232) used to control it by a client (control unit, PC,
Laptop etc.). The TiXML - Control Protocol is used to control and configure the Tixi Device as
a messaging system. TiXML may also be used to control a Tixi Device remotely via a phone
line (see chapter 5.2) or via the LAN/Internet (see chapter 3.16).

2.2 RS232 Communication parameters
On the RS232 host port “COM1” TiXML commands must be send with baudrate 115200bps
using 1 start bit, 8 databits, none parity, 1 stop bit (8N1).

2.3 Communication Mode
TiXML-Mode uses serial communication at 115200bps with data format 8N1. Hardware
handshake (RTS/CTS) is necessary for TiXML communication.
Modem Mode (known from version 2.X) is no longer supported.

TiXML Mode

In this mode Tixi Alarm Modem / Tixi Data Gateway works as a messaging system. A client
(for example the control unit or a PC) can now send commands and configurations to the
device and can receive responses. You can use a simple terminal program to do this. In this
mode the device is responsible for the Simple Tixi Control Protocol (TiXML).

2.4 TiXML - Control Protocol (TiXML)
The Simple Tixi Control Protocol (TiXML) is designed for use of Tixi Alarm Modem / Tixi Data
Gateway as a messaging system in industrial applications. As clients cannot implement
difficult multi-layer protocols like TCP/IP, Tixi decided to create a simple text based protocol
that is as easy to use as AT commands. Typically, the client reacts to an event by sending an
event message to the Tixi device. The TiXML protocol is reduced to a minimum so that only
the really necessary data about an event is transmitted. Furthermore, the use of a text based
protocol makes debugging very simple and the time and effort required for learning and
understanding of the protocol is very small.

The protocol is derived from Simple Object Access Protocol (SOAP)1 which is designed for
message transports via HTTP and Internet to implement remote procedure calls via the
Internet. In TiXML the complete message envelope is replaced by a simple frame "[...]". Only
the message contents (body) are used. Like SOAP, the TiXML uses the Extensible Mark-up
Language (XML)2 as the message format. TiXML messages can therefore be edited as XML
documents using third party XML editor programs. This reduces the occurrence of syntactical
errors.

2.4.1 Overview
TiXML implements a simple text-based remote procedure call mechanism. The client calls a
procedure prepared by the Tixi device (which is in the role of the server) and the Tixi device
answers with a return value (in fact a return message, containing more than one value).To
call a procedure, a message is sent by the client to the Tixi device. The message is enclosed
by a message frame (see “Framing”). The procedure and the parameters are encoded as a
XML document (see “Command Encoding”).

1 http://www.w3.org/TR/SOAP or msdn.microsoft.com/soap
2 http://www.w3.org/XML

TiXML Reference Manual

 8

2.4.2 Framing
Each Message is enclosed in square brackets:

 [<DoOn _="Event"/>]

The example shows a message body with one line. Messages with multiple lines are also
allowed. Only one <> element is allowed per single line. In this case the message is
enclosed in the same way as with one line: the first character is a '[' and the last character in
the last line is a closing ']'. No CR/LF is needed at the end of the frame.

[<DoOn _="Event">

 <Param1 _="Value1"/>
 <Param2 _="Value2"/>
 <Param3 _="Value3"/>

</DoOn>]

The framing is the same for messages send to the Tixi device as for messages received from
the Tixi device.
The Tixi device does not answer until it has received a complete frame.

Note: The first two characters of a TiXML command [< have to be entered without delay,
otherwise the command will not be recognized.

2.4.3 Command Encoding
Each procedure call and corresponding answer is encoded as a simple XML document. A
XML document has a single root element. The name of this element is the name of the called
procedure. Both, the procedure call message and the answer message have the same root
element name. When the message is send by the client to the Tixi device, the message is
interpreted as a procedure call. In the opposite direction the message is the answer to a
procedure call. Each procedure call is answered by an answering message. If there is an
error in the command processing, an error frame is sent by the Tixi device.

The client should wait with a timeout of 10s for an answer from the Tixi Device before it
makes the next procedure call. In some conditions (e.g. creating an email with large Logfile
attachment) the response to a DoOn command may even take several minutes.

To generate something like an “AT command set" for controlling a Tixi Device, each
procedure is equivalent to a command. Therefore the procedure name is the command
name.

The simplest XML document consists of a single element which is also the root element.

 <DoOn _="Event"/> single element document.

This is equivalent to <DoOn _="Event"></DoOn>. As it has no value, the end tag
</DoOn> can be removed and the tag ends with /> instead.

Start frame End frame Message Body

Start frame

End frame

Message Body

TiXML Reference Manual

 9

Root
Element

Children of
the Root

A complex XML document has a tree structure:

<DoOn _="Event">
<Param1 _="Value1"/>
<Param2 _="Value2"/>
<Param3 _="Value3"/>

</DoOn>

where the children are enclosed by the tags of the parent.

Only one <> element is allowed per line.

Character Set
TiXML uses character set ISO-8859-1 (ASCII + Latin-1).

Some ASCII characters are part of the TiXML syntax, and therefore have to be replaced by
“entities” if used inside attribute values:

Character Entity
< <

> >

& &

" "

All Latin-1 character (iso-8859-1 supplement) have to be inserted as HEX entity
&#x[code];

Character Entity
ö ö

ä ä

ü ü

The complete code charts can be found here:
http://www.unicode.org/charts/PDF/U0080.pdf

http://www.unicode.org/charts/PDF/U0080.pdf

TiXML Reference Manual

 10

Owned Parameter of the Command

Parameter List

Optional
Parameter

Parameter List

Command Name
The example shows the procedure call message and its answer. Both have the same root
element name.

Control Unit sends: [<DoOn _"Alarm_0">
 <Barn _="12"/>
 <Temperature _="10"/>
</DoOn>]

Tixi Device responds: [<DoOn/>]

Please note that a command name or tag name must not exceed 20 characters.
Only characters [a-z][A-Z][0-9] and [_] are valid, no digit at the beginning.

Parameters
The parameters of the command and result values can be encoded in different ways:

The command and the answer can have an owned parameter. Its name is implicitly known
or has the same name as the command. The value of the parameter is encoded as an XML
attribute with the character '_' as XML attribute. The attribute value has to be in quotes ‘”’
(ASCII dec 34) and assigned by an equals sign ‘=’.

Note that there is a space character between the tag name and the '_' character.

Additional parameters can be encoded as a list of Parameters (pairs of names and values)
like in the example above. <Barn _="12"/> is a Parameter with the name 'Barn' and the
value '12'.

[<DoOn _="Alarm_0">
<Barn _="12"/>
<Temperature _="10"/>

</DoOn>]

In the root element tag some additional parameters can be inserted. These parameters are
optional and have a default value, which is used when the parameter is not written in the
command message.

[<DoOn _="Alarm_0" ver="y">
 <Barn _="12"/>
 <Temperature _="10"/>
</DoOn>]

Any parameter may include references to system properties (see chapters 3.1.1 and 12):

[<DoOn _="Alarm_0">
 <Barn _="®/Process/Bus1/Device_0/Variable_0"/>
 <Temperature _="®/Process/Bus1/Device_0/Variable_1"/>
</DoOn>]

References

TiXML Reference Manual

 11

If you have complex parameters you can encode it as a structured XML document. The
following example shows the command to write a complete database where the database is
the complex parameter.

[<SetConfig _="ISP" ver="y">
 <ISP>
 <PPPComm>
 <PPPUserName _="user"/>
 <PPPPassword _="pass"/>
 <AuthentFlags _="3"/>
 <FirstDNSAddr _="194.25.2.129"/>
 <SecondDNSAddr _="193.158.131.19"/>
 </PPPComm>
 <SMTP>
 <mailserver_name _="domain.com"/>
 </SMTP>
 <Modem>
 <RemotePhoneNumber _="+49-30-1234567"/>
 <MediaType _="DATA"/>
 <ModemProtocol _="syncPPP"/>
 </Modem>
 </ISP>
</SetConfig>]

Important:
If you send complete projects or large databases to the modem, we recommend stopping the
job processing before sending the first SetConfig:
[<Set _="/Process/Program/Mode" value="Stop" ver="v"/>]
After uploading the project/database you have to start the job processing (this is
automatically done by modem reset):
[<Set _="/Process/Program/Mode" value="Run" ver="v"/>]

2.4.4 Error Frame
When the command processing produces an error, the Tixi device responds with an error
frame. The size of this frame is controlled by the optional verbose parameter which can
be included in each command:

ver - verbose parameter controlling the error response size
Syntax:

ver="e"

Description:

This optional parameter can be inserted at each command and controls the size of
the error message returned by the Tixi Device.

Elements:

e:
 n...short error message - returns an error code (default).
 y…verbose error message – returns a short description
 v...extended error message – returns an extended verbose description

Complex
parameter

TiXML Reference Manual

 12

Example:

Short error message:

[<GetConfig _="Event/Alert1" ver="n"/>]

 <Error _="-1498"/>

Verbose Error Message:

[<GetConfig _="Event/Alert1" ver="y"/>]

<Error>
<ErrNo _="-1498"/>
<ErrText _="path not found"/>
<ErrorCause>
 <ErrNo _="-1498"/>
 <ErrText _="path not found"/>
 <Class _="TXSTCPReadDatabaseCmd"/>
</ErrorCause>

</Error>

If there are simple microcontroller driven clients, which cannot parse XML data, the default
verbose flag 'n' can be used. This returns a single line error frame with an error number. It
can be easily processed by this type of device. The verbose flag 'y' should be used during
the configuration, when the error frame is not automatically processed but the user needs
verbose information on the cause of the error.

For most commands, the following default error frame is created.
Default Error Frame
Description:

Error frame returned by most commands when an error occurs during command
processing. This frame is sent instead of the answer frame which is sent when no
error occurs.

Note:
Some commands extend this frame by additional classes of errors.

ver="n":
 <Error _="errn"/>

ver="y":

<Error>
 TiXML Error:
 ErrorCause:
</Error>

 TiXML Error:
 Error of the TiXML protocol.
 <ErrNo _="errn"/>
 <ErrText _="Error Description"/>

TiXML Reference Manual

 13

 ErrorCause:
 Original error detected in the system.
 <ErrorCause>
 <ErrNo _="errn"/>
 <ErrText _="Error Description"/>
 <Class _="Class Name"/>
 ErrorContext
 </ErrorCause>

 ErrorContext:
 Optional context information on the error.
 <Context1 _="ContextValue"/>
 <Context2 _="ContextValue"/>
 <Context3 _="ContextValue"/>

 errn:

<0...Error code.

 Error Description:
 Short description text of the error.

 Class Name:
 ID where the error number is related.

 ContextValue:
 The context information.

Example:
Short error message:
 [<GetConfig _="Event/Alert1"/>]
 < Error _="-1498"/>

Verbose Error Message:
 [<GetConfig _="Event/Alert1" ver="y"/>]

<Error>
 <ErrNo _="-1498"/>
 <ErrText _="path not found"/>
 <ErrorCause>
 <ErrNo _="-1498"/>
 <ErrText _="path not found"/>
 <Class _="TXSTCPReadDatabaseCmd"/>
 </ErrorCause>
</Error>

TiXML Reference Manual

 14

2.4.5 Error codes
There are several errors returned or logged if a command or a job could not be processed.
The answer frame in this case is a single line error frame. The following error numbers are
returned:

Number Description

-24 unable to read from disk
-38 failure to receive expected frame
-43 cannot send EOP frame
-45 disconnection requested by remote
-46 can't transmit end of data
-100 Key not found
-102 last write not yet finished
-102 event contains unknown command
-104 the referenced process variable was invalid
-105 unknown variable type
-105 log file empty on delete
-106 requested path not found
-107 current task already writes to logfile
-107 no event given
-108 unknown error
-109 the syntax of the database is incorrect
-110 the config data is faulty
-112 script terminated with error
-112 no value given
-114 the set command failed
-117 invalid log file content type
-151 required parameter in configuration missing
-200 no address for this station given
-201 template header not found
-202 unknown log file
-204 connection lost
-204 unknown keyword
-204 invalid mail type
-204 the tag name was too long
-205 the requested bus type is not supported
-206 no record given
-207 no memory for mail
-208 temporary no memory for mail
-210 the last write yield an error
-213 no job type given
-215 configuration not found (invalid path)
-219 length of SMS message exceeds 160 chars
-225 no for_all given
-229 copy operation failed
-232 command parameter missing
-239 second StartCheckSum command. Only one is allowed
-240 illegal command parameter (StopCheckSum)
-300 modem connection failed
-306 error writing a read only variable
-307 build up PPP stack failed
-399 modem not connected
-401 Frame stream error
-510 file does not exist
-516 select function for send timed out
-520 ordered file space can't be reserved
-607 stack level incomplete on exit
-1095 command is remotely not available
-1097 connection lost - still in remote mode
-1098 authentication required
-1099 command not recognized

TiXML Reference Manual

 15

-1193 the accessed database is corrupt
-1194 database does not exist
-1195 failed to store database
-1197 could not copy content to file/db
-1199 could not open database
-1496 could not open database
-1497 could not read database
-1498 path not found
-1499 no path given
-1885 the set command failed
-1886 DoOn parameter missing
-1889 could not open journal
-1896 an error in the job creation occurred
-1899 event not in list
-2093 CHAP error - no default user defined
-2094 modem connection lost
-2095 no modem connection
-2099 no phone number given
-2194 value exists, but does not contain valid data
-2196 path to key not found
-2197 cannot interpret the value to set
-2297 invalid magic number for factory reset
-2298 reset command remotely not allowed
-2299 invalid reset command
-2391 comport used by configuration tool
-2397 the requested comport does not exist
-2491 no authentication method given
-2493 invalid authentication method
-2497 the user/password is invalid
-2698 error during reading the logfile
-2699 the log entry range is invalid

2.4.6 Commands
TiXML implements several commands (equivalent to the AT command set of a modem) for
the control of the device. The commands can be divided into the following groups:

2.4.6.1 Device control

Reset – Reset the device
Syntax:

<Reset _="Mode" magic="number"/>

Description:

This command resets the device.

Note: The reset is started when the command is received by the device. Depending on the
device (especially Flash Memory Size) 6s to 30s will elapse before the device is
ready again.

TiXML Reference Manual

 16

Parameter:
Mode:

Keep Keep the current settings.

Factory Sets the device to its factory settings.
Note: All configurations set with the 'SetConfig' command are deleted.
GSM and even Ethernet settings (if “persistent”) will be kept to guarantee
remote access.

Update Checks the SD-Card for a firmware update.

Download
 Sets the Modem into firmware update mode. The command has to be

followed by ATI9 <CRLF> to detect the upload baudrate (answer: “Serial
mode, no modem code!”) Thereafter the binary firmware file may be sent
using Z-Modem protocol.

Format Reformats the flash memory

number: A magic number is necessary for the factory reset of a remote device or a

factory reset via SD card.
 The magic number is “030406080".

Return:

If no error (command is processed):
<Reset/>

On error (command is not processed):

see default error frame (chapter 2.4.4)
Example:

Reset the Tixi Device and keep the current settings.

Client sends: [<Reset _="Keep"/>]
Tixi Device responds: [<Reset/>]

SetTime - Sets the system time of the device
Syntax:

<SetTime _="YYYY/MM/DD,hh:mm:ss"/>
Description:

This command sets the system time of the Tixi device to the value of the parameter.

Note: The Tixi device contains a Real Time Clock (RTC) that keeps the system time when

the power is off. Use this command to set the device time.
Parameter:
YYYY:

1970...2034 - year.
MM:

01...12- month.
DD:

01...31- day.
hh:

00...23- hour.
mm:

00...59- minutes.
ss:

00...59- seconds.

TiXML Reference Manual

 17

Return:
If no error (command is processed):

<SetTime/>

On error (command is not processed):

see default error frame (chapter 2.4.4)
Example:

Set the Tixi Device system time to 18 Aug 2000 13:10 hour and 34 seconds.

Client sends: [<SetTime _="2000/08/18,13:10:34"/>]
Tixi Device responds: [<SetTime/>]

GetTime - Gets the current system time of the device
Syntax:

<GetTime/>

Description:
This command returns the current system time of the Tixi device.

Note: This command is used by our programming tools to check whether the Tixi

device responds to TiXML commands or not.
Parameter:

No Parameter.

Return:

If no error (command is processed):

<GetTime _="YYYY/MM/DD,hh:mm:ss"/>

YYYY:
1970...2034 - year.

MM:
01...12 - month.

DD:
01...31 - day.

hh:
00...23 - hour.

mm:
00...59 - minutes.

ss:
00...59 - seconds.

On error (command is not processed):

see default error frame (chapter 2.4.4)

Example:

Get the current system time of the Tixi Device.

Client sends: [<GetTime/>]
Tixi Device responds: [<GetTime _="2000/08/18,13:10:34"/>]

TiXML Reference Manual

 18

TransMode - Set the Tixi Device to a transparent mode to control the connected client
device
Syntax:

<TransMode format="SerialFormat" local=”localSerialFormat”
baud="Baud Rate" com="comport" handshake="Handshake" keep="time"
wait="timeout"/>

Description:

1. It switches the Tixi Device to a transparent mode.
Two modes are possible:

- Local transparent mode: data from COM1 will be routed to the selected
 extension com port (COM2/COM3).

- Remote transparent mode: data from the local dialing modem will be routed
 to the selected com port or the host
 port COM1 (if parameter com was omitted) of the
 remote modem.

2. It transforms the baud rate and the serial data format from the local (COM1 or
dialing modem) values to the values that the client device, e.g. PLC, uses.

Note: It takes about 100ms to forward the first data after establishing the transparent

mode.
 This transparent mode of the remote Tixi Alarm Modem is left when the dialup

connection is interupted. Thereafter the remote Tixi Alarm Modem goes back in the
TiXML-Mode. To disconnecta remote transparent mode, the local desktop PC must
send the escape sequence (+++) and ATH.

 A transparent mode to the host port MB (COM1) is denied if a local login session is
open (see chapter 0).

 If a local TransMode was issued (e.g. from COM1 to COM2), the Modem goes back

to TiXML Mode after DTR-low (after “keep” timeout) on COM1 or after a PnP
initialization.

 Remote TransMode is not available for Ethernet devices (Tixi Data Gateways).
Parameter:
SerialFormat:

String which encodes the serial format that is used between modem and client device. It
has the following syntax (default "8N1"):
DataBitsParityBitsStopBits

DataBits
8...8 data bits are used.
7...7 data bits are used.

ParityBits
N...No parity bit.
E...Even parity.
O...Odd parity.

StopBits
1...one stop bit.
2...two stop bits.

localSerialFormat:
 Same as “SerialFormat” but used between PC and modem.

Baud Rate:

Baudrate in bits per second (bps) (Default 115200).
comport:

TiXML Reference Manual

 19

Specifies the COM port on the Tixi device used for the connection.
COM1 Programming port (labeled COM1 RS232) (default)

 COM2 PLC port (labeled COM2 RS232 or COM2 R-485/422) (if available)
COM3 M-Bus interface (labeled M-Bus) (if available)

Handshake:
Used communication handshake.
 None communication without handshake
 XONXOFF software handshake
 XONXOFFPASS software handshake, XONXOFF forwarded to application
 RTSCTS hardware handshake with RTS CTS
 DTRDSR hardware handshake with DTR DSR
 HALF Halfduplex RS 485 communication
 FULL Fullduplex RS 485/422
 HALFX Halfduplex RS 485 communication with XON XOFF
 FULLX Fullduplex RS 485/422 with XON XOFF
 noDTR disables DTR control, DTR will be always active

time:
 There are two different functions for this parameter, depending on the connection:

 During connection from one Tixi device port to its second port:
 Specifies the time period the Tixi device will wait for the application to take over
 the serial port (Default 0s). After this time the modem will automatically leave the
 TransMode.
 During remote connection (optional):
 Specifies the time period the Tixi Device will try to disable the bus protocol at
 the specified com port to establish a transparent connection.

timeout:
 Specifies the time the Tixi Device will try to disable a PLC bus protocol on
 the remote com port (Default: 20s).

Return:

This command returns no TiXML frame because the TiXML protocol is left.
The string CONNECT acknowledges the established transparent mode.

Example:
1.
Set the Tixi Device to the transparent mode and connect it to the client device with 57600bps
and 8 data bits, even parity bit and one stop bit. Data from COM1 will be routed to COM2
vice versa:

Client sends:
[<TransMode baud="57600" local=”8E1” format="8E1" com="COM2"/>]
Tixi Device responds: CONNECT

2.
Connect to a remote Tixi Alarm Modem, switch the device to the transparent mode with a
baud rate of 9600 and a format of 8N1 on RS 485 halfduplex interface COM2.

Client sends: [<TransMode baud="9600" format="8N1" com="COM2"
 handshake="HALF" keep="20s"/>]
Tixi Alarm Modem responds: CONNECT

TiXML Reference Manual

 20

Steps after CONNECT message:
1. Disconnect the client (R-CON, TILA2, TICO) from COM Port.
2. Connect the other control program (e.g. PLC software) to the COM Port.
3. Control the remote client through the Tixi Alarm Modem.
4. Disconnect the control program from COM port.
5. Connect the client (R-CON, TILA2, TICO) to the Tixi Alarm Modem COM port.
6. Disconnect:
 Local TransMode:
 Client sends: Plug&Play sequence
 Remote TransMode:

Client sends: (wait one second) +++ (wait one second)
Modem responds: OK
Client sends: ATH

ScanWLAN – Scan for available WLAN access points
Syntax:

See chapter 3.15

2.4.6.2 Authentication
Login – Start a TiXML session
Syntax:

<Login _="type" user="User Name" password="Password"/>

Description:

This command starts a TiXML session for a user. By this command the user makes an
authentication to the device.

Note: The Tixi device can be protected against unauthorized access. In the factory

configuration no access protection is provided. In this system state the Login
command doesn't need to be sent to control the device. In this state each command
has its own session, i.e. the session starts implicitly with the command and ends
after command return.
When the Login command is sent in this state, user name and password are
ignored.
If you need to upload several databases to the modem (configuration session), and
one of the databases includes user access configuration, it is recommended to send
a [<Login/>] command at first to open a TiXML session. Otherwise all SetConfig
commands after uploading the new user access configuration will be blocked
according to the new access protection users.

To limit the access to certain users you can create a service/group/user/password map
in the configuration of the Tixi device. If this map is not empty, no command is
processed until the login command with a valid user-password pair is sent, for example,
by the client. This protection is related to the connection (RS232, LAN or phone line
connection) where the commands are sent. If there is another connection at the same
time this connection needs its own authentication.

An accepted login is valid until:

• The Logout command is sent
• or a Login command with an invalid user-password pair is sent
• or the power goes off
• or the DTR is low

TiXML Reference Manual

 21

• or the remote connection is broken (for remote control only).
• or no commands are received for 5 minutes (idle timeout)

To create the access protection, see chapter 3.6.

There are two ways to remove the access limitation:

1. Send an empty AccRights configuration (see chapter 3.6).
2. Make a factory reset using the Reset command with the parameter Factory.

See chapter 2.4.6.1 for details on resetting the Tixi device. Keep in mind that a
factory reset deletes all other settings as well.

Parameter:
type:

PAP (Password Authentication Protocol) sends the password without
 encoding.
CHAP (Challenge Handshake Authentication Protocol) multistep protocol does

not send the password, a challenge is exchanged.

User Name
 User name can be empty if no authentication is required or it must be empty if the
 "Def_Service" users are configured (password protection).

Password
 Password. Can be empty.
Return:
If no error (command is processed):

<Login/>

On error (command is not processed):

see default error frame (chapter 2.4.4)

TiXML Reference Manual

 22

Example:
Login successful:

Client sends: [<Login _="PAP" user="Name" password="secret"/>]
Tixi Device returns: [<Login/>]

Login not successful:

Client sends: [<Login _="PAP" user="Name" password="try"/>]
Tixi Device returns: [<Error _="-1098"/>]

CHAP Login Sequence (Username “Daniel”, Plain-Password "test")

Client sends: [<Login _="CHAP" user="Daniel"/>]
Tixi Device returns:
 [<Login _="Challenge">

<key _="b0a12c96ef9b01f8c07fd98b332c165ffdab5764872ef049" />
<id _="31" />
</Login>]

Client sends: [<Login _="Response" id="31" md5="468041b48c6bca5ffd9834209d8b1935"
ver="y"/>]

Tixi Device returns: [<Login/>]

The hash for the MD5 response is calculated over the string “ID+password+key”. The
string in the above example would be

 "31testb0a12c96ef9b01f8c07fd98b332c165ffdab5764872ef049"

Logout – Quit a controlling session
Syntax:

<Logout/>

Description:

This command quits a TiXML session - started with a successful Login. It denies the
access right to the Tixi Device for the connection where the command is sent.

Note: This command can be sent at any time. It affects the access to the Tixi device if a

Login command was sent before. In this case the access right is denied and a new
Login will be necessary to get access again. If no access protection is configured or
no login session is established, this command does nothing.

Parameter:
No Parameter.

Return:
If no error (command is processed):

<Logout/>

On error (command is not processed):

see default error frame (chapter 2.4.4)
Example:

Login successful

Client sends: [<Logout/>]
Tixi Device returns: [<Logout/>]

TiXML Reference Manual

 23

2.4.6.3 Event processing
DoOn – Trigger an Event
Syntax:

<DoOn _="EventName">
ParameterList

</DoOn>
 or

<DoOn _="EventName"/>

Description:
This starts the processing of a client event. The command can be used to test the
processing of events without need to change the associated trigger variables.

Note: There are two forms of syntax; one is the long form which allows the transmission of

additional attributes representing the parameters of the event context. If no event
context is present, the short form is used. The command starts the event processing
when the result is sent back to the client.

In most cases this leads to the creation of message jobs. The sending process of
the messages is done while the client can create new event messages. The results
of the processing are observed by the Tixi device itself. The results can be observed
by the client using the ReadLog command which is described in chapters 2.4.6.6
(how to read logfiles) and 4 (how to create logfiles). Active jobs can be read using
the GetJob command (see following pages)

Parameter:
EventName:

Name of the event to be processed. There must be an EventHandler configuration in the
'EVENTS' database using this name. See chapter 3.2 for details on EventHandler
database.

ParameterList:
List of XML encoded parameters representing the event context. A parameter is written
in a single XML tag:

<ParameterKey _="Value"/>

where

ParameterKey: is the unique name of the parameter.
Value: is the value of the parameter.

Return:
If no error (command is processed):

<DoOn/>

On error (command is not processed):
ver="n":

<Error _="errn"/>

ver="y":
<Error>

TiXML Error:
JobGeneratorError
ErrorCause:

</Error>

TiXML Reference Manual

 24

TiXML Error:
Error of the TiXML protocol.
<ErrNo _="errn"/>
<ErrText _="Error Description"/>

JobGeneratorError:

Error during Job generation.
<JobGeneratorError>

<ErrNo _="errn"/>
<ErrText _="Error Description"/>
ErrorContext

</JobGeneratorError>

ErrorCause:
Original error detected in the system.
<ErrorCause>

<ErrNo _="errn"/>
<ErrText _="Error Description"/>
<Class _="Class Name"/>
ErrorContext

</ErrorCause>

ErrorContext:
Optional context information on the error.
<Context1 _="ContextValue"/>
<Context2 _="ContextValue"/>
<Context3 _="ContextValue"/>

errn:

0....OK
<0...Error code.

Error Description:

Short description text of the error.

Class Name:
ID where the error number is related.

ContextValue:

The context information text.

Example:
Process the 'TemperatureAlert' event. The event context contains the barn ID = 12 where the
temperature is in a critical range and the value of the temperature in degrees of Celsius.

Control Unit sends: [<DoOn _"TemperatureAlert">

 <Barn _="12"/>
 <Temperature _="10"/>
 </DoOn>]

Tixi Device responds: [<DoOn/>]

TiXML Reference Manual

 25

GetJob – Shows a list of currently active jobs
Syntax:

<GetJob del="Mode"/>

Description:

This command shows a list of job groups and currently active jobs.

Note: This command may also be used to cancel currently active jobs, e.g. to delete
messages from the message queue.

Parameter:
Mode: y delete all active jobs (running jobs can’t be deleted!)

 n don’t delete active jobs (default)
Return:

If no error (command is processed):

 <GetJob>
 <JobGroup _="State">
 <Job_X>
 <Time _="Date,Time"/>
 <Type _="Type"/>
 <Priority _="Priority"/>
 <Origin _="Origin"/>
 </Job_X>
 </JobGroup>
 …
 </GetJob>

JobGroup: Name of job group.
 Currently known groups:
 Modem_Mode
 Default
 Express_E-mail_Send
 Express_E-mail_Recv
 TSAdapter
 SMS_Receive
 SMS_Send
 POP3_Client
 HTTP_Server_In
 CGI_DoOn
 HTTP_Server_Out
 Time_Client
 URL_Send
 SMTP_Client
 Fax_Send
 Text_Fax
 Fax_Receive
 Script_Send
 Incoming_Call
 Auto_Transmode
 Job_Result_Processor
 Remote_ModemMode
 TSAdapterCallback

State: State of job group
 Started Jobs will be processed
 Stopped Jobs are not processed (service not licensed)

TiXML Reference Manual

 26

X: Active job number (increases)

Date,Time: Start time of job

Type: Job type number, e.g. 5=GSMSMS

Priority: Priority of job (see chapter 3.7.1)

Origin: EventHandler name

On error (command is not processed):

see default error frame (chapter 2.4.4)
Examples:

GetJob on idle system state:

 Client sends: [<GetJob/>]

Tixi Alarm Modem responds:
[<GetJob>
 <Modem_Mode _="Started"/>
 <Default _="Started"/>
 <Express_E-mail_Send _="Started"/>
 <Express_E-mail_Recv _="Started"/>
 <TSAdapter _="Started"/>
 <SMS_Receive _="Started"/>
 <SMS_Send _="Started"/>
 <POP3_Client _="Started"/>
 <HTTP_Server_In _="Started"/>
 <CGI_DoOn _="Started"/>
 <HTTP_Server_Out _="Started"/>
 <Time_Client _="Started"/>
 <URL_Send _="Started"/>
 <SMTP_Client _="Started"/>
 <Fax_Send _="Started"/>
 <Text_Fax _="Started"/>
 <Fax_Receive _="Started"/>
 <Script_Send _="Started"/>
 <Print_Jobs _="Started"/>
 <Incoming_Call _="Started"/>
 <Auto_Transmode _="Started"/>
 <Job_Result_Processor _="Started"/>
 <Remote_ModemMode _="Started"/>
 <TSAdapterCallback _="Started"/>
</GetJob>]

GetJob with SMS in message queue, waiting for acknowledge:

TiXML Reference Manual

 27

 Client sends: [<GetJob/>]

Tixi Alarm Modem responds:
 [<GetJob>
 <Modem_Mode _="Started"/>
 …
 <Text_Fax _="Started"/>
 <Script_Send _="Started">
 <Job_3>
 <Time _="2008/04/26,17:25:47"/>
 <Type _="5"/>
 <Priority _="1"/>
 <Origin _="currently unavailable (running)!" />
 </Job_3>
 </Script_Send>
 <Incoming_Call_Trigger _="Started"/>
 <Job_Result_Processor _="Started">
 <Job_3>
 <Time _="2038/01/19,03:14:07"/>
 <Type _="65"/>
 <Priority _="99"/>
 <Origin _="Alarm_0"/>
 </Job_3>
 </Job_Result_Processor>
 <Remote_ModemMode _="Started"/>
 </GetJob>]

GetJob delete:

 Client sends: [<GetJob del="y"/>]

The Tixi Device answers with the list of all active jobs including the deleted jobs.
A thereafter immedialtely send [<GetJob/>] will show a list without active jobs (if no new
jobs are started in the meantime).

2.4.6.4 Configuration
SetConfig - Set configuration data.
Syntax:

<SetConfig _="Path">
XML-Data

</SetConfig>

Description:
This command writes configuration data into a database.

Note: The Tixi device stores its data permanently in an embedded XML database. The

database is prepared by the firmware of the Tixi device. It can't be deleted or
created by the client. Only the contents of the database can be changed.

Parameter:
Path:

DataBase/GroupPath
DataBase Name of the database where the data has to be written.
GroupPath Path name in the database where the attribute group is to be

inserted/replaced (optional and for attribute groups only).
XML-Data:

TiXML Reference Manual

 28

Attribute group or complete XML database document.

Note: Complete attribute groups or databases can be changed only! The command

handler replaces the old attribute group by the new one. Separate attributes of an
attribute group cannot be changed. If the attribute group does not exist in the
database, the database is extended by the attribute group.

Return:

If no error (command is processed):

<SetConfig/>

On error (command is not processed):

see default error frame (chapter 2.4.4)
Example 1:
Replace the contents of the 'Modem' attribute group inside the database 'ISP' and the
attribute group 'ISP'

Client sends:

[<SetConfig _="ISP/ISP">
<Modem>

<RemotePhoneNumber _="+49-30-40608117"/>
<MediaType _="DATA"/>
<ModemProtocol _="syncPPP"/>

</Modem>
</SetConfig>]

Tixi Device responds: [<SetConfig/>]

Example 2:
Replace the contents of the ISP group inside the database with the name 'ISP'.

Client sends:

[<SetConfig _="ISP">
<ISP>

<PPPComm>
<PPPUserName _="user"/>
<PPPPassword _="pass"/>
<AuthentFlags _="3"/>
<FirstDNSAddr _="194.25.2.129"/>
<SecondDNSAddr _="193.158.131.19"/>

</PPPComm>
<SMTP>

<mailserver_name _="domain.com"/>
</SMTP>

<Modem>

<RemotePhoneNumber _="+49-30-1234567"/>
<MediaType _="DATA"/>
<ModemProtocol _="syncPPP"/>

</Modem>
</ISP>

</SetConfig>]

Tixi Device responds: [<SetConfig/>]

TiXML Reference Manual

 29

GetConfig - Get configuration data.
Syntax:

<GetConfig _="Path"/>

Description:
This command reads the configuration data from a database of the Tixi device

Parameter:
Path:

DataBase/GroupPath
DataBase Name of the database to read.
GroupPath Path name in the database to read (optional and for attribute groups

only).

Return:
If no error (command is processed):

<GetConfig>
XML-Data

</GetConfig>

XML-Data:
Sub tree or complete XML database document.

On error (command is not processed):

see default error frame (chapter 2.4.4)

Example
Get the contents of the ISP group inside the database with the name 'ISP'.

Client sends: [<GetConfig _="ISP/ISP"/>]
Tixi Device responds: [<GetConfig>

<ISP>
<PPPComm>

<PPPUserName _="user"/>
<PPPPassword _="pass"/>
<AuthentFlags _="3"/>
<FirstDNSAddr _="194.25.2.129"/>
<SecondDNSAddr _="193.158.131.19"/>

</PPPComm>

<SMTP>

<mailserver_name _="domain.com"/>
</SMTP>
<Modem>

<RemotePhoneNumber _="+49-30-1234567"/>
<MediaType _="DATA"/>
<ModemProtocol _="syncPPP"/>

</Modem>
</ISP>

</GetConfig>]

TiXML Reference Manual

 30

2.4.6.5 Process values
Get - Get System Property
Syntax:

<Get _="Path" AddInfo="Error" exp="Exponent" multip="Factor+Offset"
format="FormatString" ViewProperties="Flags"/>

Description:
Get the value of the system properties referred by the Path value.

The System Properties are the set of data describing a Tixi Device. This includes
administrative information like version numbers, licenses etc. which are defined at the
creation time of the firmware as well as information on the hardware configuration and
also the system state. The system state includes the system time, the system mode, the
states of the I/O ports and PLC variables etc. The configuration settings defined by the
SetConfig are a part of the system state and therefore a part of the system properties.
They can therefore also be accessed by the Get command. The difference to the
GetConfig command is the way the data is addressed and the structure of the returned
data. Both commands use a slash separated path to address the data but Get
addresses a single value only where GetConfig addresses complex values, for example
a complete attribute group.

A second difference is in the data itself. All System Properties have a unique address
defined by their path. Configurations contain parts which have no unique addresses: For
example the PLC “External” could contain several “Devices” on a “Bus” which all have
the same tag name “Device”. In this case an element can't be addressed uniquely by a
path. Therefore, not all elements of the configuration can be addressed by the Get
command. Use GetConfig instead.

Parameters:
empty:
 If no parameter is given, the Tixi Device will send a list of all system properties.
Path:

 Path which addresses the system property. See chapter 12 “Appendix - System
 Properties” for details on system properties. The last element of the past may be a
 variable name or the name of a system property tree followed by a slash.

Error :
 For directly reading the error state of a process variable or PLC variable, the “Get”
 command may be extended by the AddInfo attribute that displays the value of an
 additional information (“ErrorClass,ErrorValue”) instead of displaying the
 variable value
 ErrorClass:

0 = no error
1 = error (see ErrorValue)

. ErrorValue:
 See chapter 6.3.2 for ErrorValues.

 See PLC-TiXML-Manual for further information.

Exponent:

 Exponent of base 10 to specify fix point precision of
 simpleType = Uint8, Uint16, Uint32, Int8, Int16, Int32 (see 6.5.1).
 The process variable value will be multiplied by 10 exp(Exp) to get the parameter
 value.

 valueParameter = 10 Exp * value process variable.

TiXML Reference Manual

 31

 The exponent therefore specifies the position of comma within a fix point value
 Following values are possible:

Exp value Description
-6 Precision = 0,000001
-5 Precision = 0,00001
-4 Precision = 0,0001
-3 Precision = 0,001
-2 Precision = 0,01
-1 Precision = 0,1
0 Precision = 1 (default
1 Precision = 10
2 Precision = 100
3 Precision = 1000
4 Precision = 10000
5 Precision = 100000
6 precision = 1000000

Factor+Offset
The value will be multiplied by this factor and the offset will be added to get the
 output value.
 simpleType = Uint8, Uint16, Uint32, Int8, Int16, Int32 (see 6.5.1).

 Output value = Factor * Logged value + Offset

 The factor is used as a fraction, e.g.: „1/1000“ or „3600/1“, the denominator and
 numerator must not be zero. The offset may be negative or positive.

FormatString:
 integer: (for PLC and process variables)
 1. simpleType = Uint8, Uint16, Uint32, Int8, Int16, Int32 (see 6.5.1).
 The value is displayed as integer. The integer calculates itself by using the
 exponent specified with the variable and its value :
 Value as integer = 10 -Exp * value

 2. simpleType = float, double (see 6.5.1).
 The value is displayed as integer. The integer calculates itself by using the
 precision specified with the variable and its value:
 Value as integer = 10 -Precisoin * value

 3. all other data types
 The value is displayed native (see 6.5.1).

 native: (or empty)
 The value is displayed native. (see 6.5.1).

 FormatString:
 String that defines the value output format.
 For a list of available format option see chapter 6.5.
Flags:
 Additional informations of external device variables (tree /Process/BusX/) will be
 displayed:
 Name: Variable alias name if attribute Name is specified within External
 database. See PLC TiXML manual for more details.

 TimeStamp:

TiXML Reference Manual

 32

 Time stamp of the last successful polling of an external device variable.
Return:
If no error (command is processed):

<Get _="value"/>
value: value of the system properties

On error (command is not processed):
see default error frame (chapter 2.4.4)
Example:
Get the complete Tixi Device system properties:

Client sends: [<Get ver="y"/>]

Get the state of all digital inputs of the mainboard:

Client sends: [<Get _="/Process/MB/IO/I/"/>]
Tixi Device responds: [<Get>
 <I>
 <P0 _="1"/>
 <P1 _="1"/>
 </I>
 </Get>]

Get the state of the first digital input of the mainboard:

Client sends: [<Get _="/Process/MB/IO/I/P0"/>]
Tixi Device responds: [<Get _="1"/>]

The status of the Tixi Device digital I/Os can also be read as a byte, word or dword value by
adding B (byte), W (word) or D (dword) to the branch "I" within the system property path and
referring to the first port within the group (see chapter 11.1):
Get mainboard inputs as a byte value:

Client sends: [<Get _="/Process/MB/IO/IB/P0"/>]
Tixi Device responds: [<Get _="3"/>]

Get mainboard inputs as a dword value:

Client sends: [<Get _="/Process/MB/IO/ID/P0"/>]
Tixi Device responds: [<Get _="3"/>]

Get the Tixi Device serial number:

Client sends: [<Get _="/SerialNo" ver="y"/>]
Tixi Device responds: [<Get _="00081101"/>]

Get and reformat the state of the analog input of the mainboard with two decimal places:

Client sends: [<Get _="/Process/MB/A/AI/P0" format="F,2"/>]
Tixi Device responds: [<Get _="31,45"/>]

Get the state of the analog input of the mainboard with an offset of 50:

Client sends: [<Get _="/Process/MB/A/AI/P0" multip="1/1+50"/>]
Tixi Device responds: [<Get _="3195"/>]

Get the native value of a formatted process variable:

Client sends: [<Get _="/Process/PV/Variable" format="native"/>]
Tixi Device responds: [<Get _="12345"/>]

Get the error state of the PLC variable “Variable_0” at “Device_0” on PLC-bus “Bus1”:

Client sends: [<Get _="/Process/Bus1/Device_0/Variable_0"
 AddInfo="Error"/>]

TiXML Reference Manual

 33

Tixi Device responds: [<Get _="0,0"/>]

Get the alias name and the last successful polling of the PLC variable “Variable_0” at
“Device_0” on PLC-bus “Bus1”:

Client sends: [<Get _="/Process/Bus1/Device_0/Variable_0"
 ViewProperties="Name,TimeStamp"/>]
Tixi Device responds: [<Get>
 <Varable_0 _="3.373" Name="Energie"
 TimeStamp="2009/01/22,14:03:09"/>

 </Get>]
Get the maximal dial attempts defined in the USER database USER section:

Client sends: [<Get _="/USER/USER/MaxDialAttempts"/>]
Tixi Device responds: [<Get _="2"/>]

Set - Set System Properties
Syntax:

<Set _="Path" value="Value" exp="Exponent"/>

Description:

Set the Value of the system properties referred by the Path value.

Note: There are many System Properties which are read only.

The System Properties are the set of data describing a Tixi Device. This includes
administrative information like version numbers, licenses etc. which are defined at the
creation time of the firmware, as well as information on the hardware configuration and
the system state. The system state includes the system time, the system mode the
states of the I/O ports etc. The configuration settings defined by the SetConfig are a part
of the system state and therefore a part of the system properties. They can therefore
also be accessed by the Set command. The difference to the SetConfig command is the
way the data is addressed and the structure of the data set. Both commands use a slash
separated path to address the data but Set addresses a single value only where
SetConfig addresses complex values, for example a complete attribute group.

A second difference is in the data itself. All System Properties have a unique address
defined by their path. Configurations contain parts which have no unique addresses: For
example the PLC “External” could contain several “Devices” on a “Bus” which all have
the same tag name “Device”. In this case an element can't be addressed uniquely by a
path. Therefore, not all elements of the configuration can be addressed by the Set
command. Use SetConfig instead.

Parameters:
Path:

Path which addresses the system properties. See Appendix - System Properties for
details on system properties.

Value:

Value to set. The syntactical format depends on the value to set. See Appendix - System
Properties for details on system properties.

Values may be entered directly as decimal, hex, octal or binary values using following
special syntax:

Example for decimal value “12”:
value=”12” (decimal)
value=”0xC” (HEX)

TiXML Reference Manual

 34

value=”0o14” (octal)
value=”0b1100” (binary)

Set command with HEX format is only supported for unsigned values.

Process and PLC variables may be defined with exponent. In this case the new value
has to be entered relatively to the exponent. Use a dot as decimal point.

Exponent:

 Exponent of base 10 to specify fix point precision of
 simpleType = Uint8, Uint16, Uint32, Int8, Int16, Int32 (see 6.5.1).
 The variable value will be devided by 10 exp(Exp) to get the parameter value.

 valueParameter = 10 Exp / value variable.

 The exponent therefore specifies the position of comma within a fix point value

 Following values are possible:

Exp value Description
-6 Precision = 0,000001
-5 Precision = 0,00001
-4 Precision = 0,0001
-3 Precision = 0,001
-2 Precision = 0,01
-1 Precision = 0,1
0 Precision = 1 (default
1 Precision = 10
2 Precision = 100
3 Precision = 1000
4 Precision = 10000
5 Precision = 100000
6 precision = 1000000

If no error (command is processed):
<Set/>

On error (command is not processed):

see default error frame (chapter 2.4.4)
Example:
Set the mode of the Process subsystem:
 Client sends: [<Set _="/Process/Program/Mode" value="Run"/>]
 Tixi Device responds: [<Set/>]

Set the the first digital output of the mainboard:

Client sends: [<Set _="/Process/MB/IO/Q/P0" value="1"/>]
Tixi Device responds: [<Set/>]

Set a process variable defined with exp=”-2”:
Client sends: [<Set _="/Process/PV/Variable" value="3.12"/>]
Tixi Device responds: [<Set/>]

Set the SignalLED to green (value=1) using an exponent:
Client sends: [<Set _="/Process/MB/SignalLED" exp="1" value="10"/>]
Tixi Device responds: [<Set/>]

TiXML Reference Manual

 35

SetSequence - Set Sequencer profile
Syntax:

See chapter 8

2.4.6.6 Logging
ReadLog – Read entries from the system’s log files.

Syntax:
<ReadLog _="LogFileName" range="entryrange" type="templates"
flags="header" fillInterval="interval" maxInterval="tolerance"
fillText="string" Viewset="variables" Formats/>

Description:
The Tixi Device returns the entries from the log file which are in the given range. The
range can be composed from entry ids, time and counts. Some special range commands
are also allowed. See chapter 4 on logfiles.

Parameter:
LogFileName:

Name of the logfile to be read.

entryrange: all | previous n timespan | last n timespan | start-end
all This returns all entries contained inside the given logfile.

last n timespan (exact calculation)
indicates that all entries from the given previous timespan calculated from the actual
time are to be returned. Where n is the number of units (must be higher than zero)
and unit the unit itself. Valid unit values are:

years indicates that n represents a number of years
months indicates that n represents a number of months
days indicates that n represents a number of days
hours indicates that n represents a number of hours
minutes indicates that n represents a number of minutes
seconds indicates that n represents a number of seconds

previous n timespan (smooth calculation)
indicates that all entries from the given previous timespan calculated from the last
unit are to be returned. Where n is the number of units (must be higher than zero)
and unit the unit itself. Valid unit values are:

years indicates that n represents a number of years
months indicates that n represents a number of months
days indicates that n represents a number of days
hours indicates that n represents a number of hours
minutes indicates that n represents a number of minutes
seconds indicates that n represents a number of seconds

 “Previous” will not show values written in the “future”, e.g. if you set the clock -1h
 during daylight saving. During this hour you’ll have to use one of the other
 parameters (e.g. “last”) instead.

start-end
Returns all entries contained between the given identifiers. These identifiers - start
and end - may have one of these formats:

[empty] Means either the first (if start) or the last (if end) entry in the

TiXML Reference Manual

 36

logfile.

#c counts either from start or from end (depends on if used for start
or for end) onto the c-th entry.

Date,Time defines a moment. Time is in hh:mm:ss format (24 hours) and
Date in YYYY/MM/DD, and Date can be omitted if it's about the
current day.

ID defines the ID of the entry (if only one ID is given) or entries (if
range of Ids is given).

Important!
Keep in mind that when using start-end you must specify at least start or end along
with the hyphen. Even if start or end is empty, the hyphen must be used.

If Time range is in the future, data of previous day will be read

Date has to be used with start AND end, or none of both.

Start Time must be before end Time.
If Time span reached next day, Date has to be used.

Last given value will be end Time – 1s.

templates:
 Predefined logfile formats:

 XML: Logfile will be displayed as XML file
 CSV: “character separated value”, e.g. for easy Excel import. (embedded XML
 frame)
 HTML: Logdata will be formatted as HTML table (embedded XML frame)

header:
 flags="NoId,NoDate,NoTime,NoNames,NoSec,UseAlias,CRC16,CRC32"

 NoId: removes the ID of each entry (only for none XML structures)
 NoDate: removes the Date of each entry (only for none XML structures)

 NoTime: removes the Time of each entry (only for none XML structures)
 NoNames: removes the first row with variable names (only for none XML
 structures)
 NoSec: removes the seconds of the time stamp
 UseAlias: adds the variable alias names to the XML logfile output
 CRC16: calculates a CRC16 over the logfile output and writes it under the
 data (only for CSV). See chapter 4.6.
 CRC32: calculates a CRC32 over the logfile output and writes it under the
 data (only for CSV). See chapter 4.6.

interval:
 Expected log interval. If the time between two log entries exceeds the
 tolerance interval, an entry with the content of string will be added with the
 timestamp of the last entry + interval.
 Can be used to create a fixed log content length if the Tixi Device was
 switched off or the logging was stopped for a while.

tolerance:
 Maximum time between two log entries before string will be added.

string: String added to the log output if tolerance interval was exceeded (only for CSV

TiXML Reference Manual

 37

 format).

variables:
 List of variables (separated by comma) to be selected for logfile output. The variable
 names must match the tag names of the record entries.

Formats:
 See chapter 4.6 for format options like “tabstart”, “tabend” etc.

Return:
If no error (command is processed), type XML:

<ReadLog _="Journal" range="all">
<ReadLog>

<LogEntry_ID _="Date,Time">

<Element _="Logged Data" Name="Alias"/>

…

</LogEntry_ID>

</ReadLog>

If no error (command is processed), type CSV:
<ReadLog _="Journal" range="all" type="CSV">

 <ReadLog>
 <LogData>
 ID;Date;Time;Element;Element;…;…
 LogEntry_ID;Date;Time;Logged Data;Logged Data;…;…
 </LogData>
 </ReadLog>

If no error (command is processed), type HTML:

<ReadLog _="Journal" range="all" type="HTML">
 <ReadLog>
 <LogData>
 <table border="1">
 <tr>
 <td>ID</td>
 <td>Date</td>
 <td>Time</td>
 <td>Element</td>
 <td>Element</td>
 …
 </tr>
 <tr>
 <td>LogEntry_ID</td>
 <td>Date</td>
 <td>Time</td>
 <td>Logged Data</td>
 <td>Logged Data</td>
 …
 </tr>
 </table>
 </LogData>
 </ReadLog>

Elements:

TiXML Reference Manual

 38

LogEntry_ID:

ID identifying the logfile entry.

Date:

The creation date “YYYY/MM/DD” of the logfile entry.

Time:

The creation time “hh:mm:ss” of the logfile entry.

Element:

Description of logged element, e.g. variable name of record definition or alias name.

Alias:

Alias name of the variable. Only displayed if UseAlias flag is used for XML outout.

 Logged data:

 Data of logged element, e.g. variable values or event/job results.

On error (command is not processed):
see default error frame (chapter 2.4.4)

Range Examples:
Get the entries with the IDs 4 – 8.

[<ReadLog _="Journal" range="ID_4-ID_8" ver="y"/>]

Get the entry with the ID 5.
[<ReadLog _="Journal" range="ID_5" ver="y"/>]

Get the entries within a timespan.
[<ReadLog _="Journal" range="12:00:00-13:20:00"/>]

Get the entries within a timespan on a specific day.
[<ReadLog _="Journal" range="2004/12/24,12:00:00-
2004/12/24,13:20:00"/>]

Get last 10 entries.
[<ReadLog> _="Journal" range="#10-"/>

Getting Timespans. Assume that the actual time is 12:23

Get entries from last 24h (exact).
[<ReadLog> _="Journal" range="last 24 hours"/>

This will return all entries from 12:23 previous day to 12:22 actual day.

Get entries from last 24h (smooth).
[<ReadLog> _="Journal" range="previous 24 hours"/>

This will return all entries from 12:00 previous day to 11:59 actual day.

TiXML Reference Manual

 39

Clear – Delete content of logfiles
Syntax:

<Clear Log="Logfiles"/>

Description:

Deletes the content of one or several logfiles.

Parameters:
Logfiles:

Logfile or list of logfiles to be deleted. To delete several logfiles with one command,
separate the logfile names by comma. Use an asterisk “*” to delete all logfiles.

If no error (command is processed):
<Clear/>

On error (command is not processed):

see default error frame (chapter 2.4.4)

Example:
Clear logfiles “JobReport" and “Event".

Client sends: [<Clear Log="JobReport,Event" ver="y"/>]
Tixi Device responds: [<Clear/>]

2.5 TiXML on SD-Card
Tixi Devices with SD-Card option (Hx400) can be configured and controlled by TiXML
commands saved on a SD-Card.

A file with the name “config.txt” must be created, containing following structure:

 <Batch ResultFile="RESULT.TXT">
 List of TiXML commands
 </Batch>

The ResultFile attribute defines the file where the TiXML command results will be written to.
The file will automatically be created (if not existing) or overwritten during processing. The file
name must be in 8.3 notations. If omitted, RESULT.TXT will be the default name.

The List of TiXML commands may include an unlimited number of commands (see chapter
2.4 for valid commands) and can therefore be used for configuration, controlling or collecting
logged data.

A login to the device may be necessary (see chapter 3.6).

The TiXML frame brackets [] must not be included.

Examples:
Config.txt to collect logged data:

<Batch ResultFile="datalog.csv">
 <ReadLog _="Datalogging_0" flags="NoID" type="CSV" range="all" ver="v"/>
</Batch>

TiXML Reference Manual

 40

Config.txt to configure address book. The Signal-LED will be switched on/off to indicate the
user when the processing of the file is finished. During configuration, the Tixi Device will be
set to stop mode:

<Batch>
 <Login/>
 <Set _="/Process/Program/Mode" value="Stop" ver="y"/>
 <Set _="/Process/MB/SignalLED" value="1" ver="y"/>

 <SetConfig _="TEMPLATE" ver="y">
 <AddressBook>
 <MySelf>
 <Email _="tixi-modem@tixi.com"/>
 </MySelf>
 <Contact_0>
 <Email _="tixi-support@tixi.com"/>
 </Contact_0>
 </AddressBook>
 </SetConfig>

 <Set _="/Process/MB/SignalLED" value="0" ver="y"/>
 <Set _="/Process/Program/Mode" value="Run" ver="y"/>
</Batch>

TiXML Reference Manual

 41

3 Main XML Databases
This chapter describes the different databases used by a basic project creation.

3.1 Introduction
We recommend the use of “TICO – TiXML Console” to easily create databases out of the
included template library.

If you use any terminal or self written program, we recommend stopping the job processing
before sending the first SetConfig:
[<Set _="/Process/Program/Mode" value="Stop" ver="y"/>]

After uploading the project/database you have to start the job processing (this is
automatically done by modem reset):
[<Set _="/Process/Program/Mode" value="Run" ver="y"/>]

3.1.1 References
The great advantage of XML databases is the possibility of linking (cross reference) the
content and save configuration time. For example, instead of configuring the same fax
number in each of the message job templates, you only have to make a reference to the fax
number in the address book.
If you change the number in the address book, it’s automatically changed for all related
message job templates.

A reference to a value is introduced by the reference symbol ® (written as XML entity
®) followed by the path to the value. The path has to be ended by a semicolon if text is
following.

Depending on the database location, you have to use different reference paths.

Some examples:

• Reference to a parameter received by EventState, DoOn or incoming message:
 ®~/parameter;

• Reference within same database

 ®/D/Group/entry;

 Example:
 Reference inside the TEMPLATE database, e.g. from MessageJobTemplate to
 AddressBook:

 ®/D/AddressBook/Contact_0;

 or MessageText to another MessageText:
 ®/D/UserTemplates/LocationText;

• Reference accross databases

 ®/DATABASE/Group/entry;

 Example:
 Reference from the TEMPLATE database to USER database:

 ®/USER/Location/PhoneNumber;

TiXML Reference Manual

 42

Insert your own data

• Path to a variable, e.g. from EventHandler Set command or within process variable:
 /Process/Bus1/Device_0/Variable_0 (without reference symbol!)

• Project-Structure related Path from EventHandler to a MessageJobTemplate:

 MessageJobTemplates/Alarm_0 (without reference symbol!)

Alternative reference:
If a reference can not be resolved by the job processor, the job will be canceled with an error
log entry. Therefore it is sometimes usefull to cascade references with alternative values,
which are separated by comma, e.g.:

®/Process/PV/Variable, ®/Process/Bus1/Device_0/Variable, 1;

Alternative values are only possible for references with “®” but not for paths (e.g.
EventHandler “set” path, EventHandler “sendmail” path) instructions.

3.1.2 Time parameters
Every time value without unit will be interpreted as “milliseconds".
A unit can be added to every value to use larger time periods:
“s" for seconds, “m" for minutes, “h" for hours, “d" for days.
Example:
<Delay _=”500”/> 500ms delay
<Delay _=”30s”/> 30s delay

3.2 Dialling Properties of the Location
The properties, which describe the telephone connection to which the device is attached, are
called "Location". This is because these properties depend on the place where the Tixi Alarm
Modem is installed.

Database path: /USER/Location

<Location>

<CountryPrefix _="00"/>
<CountryCode _="49"/>
<AreaPrefix _="0"/>
<AreaCode _="30"/>
<LocalDialPrefix _=""/>
<LongDialPrefix _=""/>
<PhoneNumber _="12345678"/>
<InternalDialPrefix _=""/>
<ExtensionNumber _=""/>
<DialRules _="Tone,NoWaitForDialTone"/>
<NumberFormat _="*"/>

</Location>

First value (ProcessVar) Second value (PLC Var) Third value (constant)

Reference sign Value separator
(comma)

End of reference
(semicolon)

TiXML Reference Manual

 43

Name Description
CountryPrefix Country prefix for international calls, e.g. 00 inside Germany.
CountryCode Country code of location without CountryPrefix, e.g. 49 for

Germany
AreaPrefix Area prefix for domestic long distance calls, e.g. 0 for Germany,

1 for the U.S.A.
AreaCode Area code of location without AreaPrefix, e.g. 30 for Berlin

GSM-Note: If you are using a Tixi Alarm Modem GSM please
enter the GSM network code of your GSM provider, e.g.
German T-Mobile: 171
German Vodafone: 172
German Eplus: 177
etc.

LocalDialPrefix PBX prefix to get an outside line for local calls (to dial numbers
with same area code). May be left blank.

LongDialPrefix PBX prefix to get an outside line for long distance calls (to dial
numbers with different area code). May be left blank.

PhoneNumber Local phone number of the location without any prefix or area
code. If no PBX is used this is the complete phone number
(e.g. 123456500). If an PBX is used, this is the phone number
of the PBX. In this case, the complete phone number will be
created by this field and the ExtensionNumber.

InternalDialPrefix PBX prefix to receive a dial tone for internal calls. May be left
blank.

ExtensionNumber Last digits of the phone number defined by the PBX extension.
DialRules Defines the Tixi Alarm Modem dial method.

DialMode:DialToneRecognition
DialMode (used for PSTN devices only):

Tone....Tone dialling
Pulse....Pulse dialling

DialToneRecognition:
WaitForDialTone....Wait for a dial tone.
NoWaitForDialTone....Do not wait for a dial tone.

e.g.: Use tone dialling and do not wait for dial tone:
Tone,NoWaitForDialTone

NumberFormat

Specifies how the modem will dial the recipients number
 * Network related (default)
 If it’s a GSM modem, all numbers are dialed canonical.
 If it’s a PSTN/ISDN modem, all numbers are dialed
 depending on the location settings.
 n location related (PSTN only)
 All numbers are dialed depending on the location
 settings (see chapter 3.2.1).
 c canonical (GSM only)
 All numbers are dialed canonical (e.g. +49172123456).

During development define this location for the place where you will test the Tixi Alarm
Modem. Later at the place where the Tixi Alarm Modem is installed, change the location
settings for this place. Due to the use of international phone numbers you don't need to
change the phone numbers in the ISP's data or in the address book to add or remove dial-
prefixes etc. Simply change the Location and Tixi Alarm Modem dials the proper number.

TiXML Reference Manual

 44

From our experience, defining a bad location is a most common error in configuring
Tixi Alarm Modem. Please follow the following hints provided.

First check whether you are using a telephone extension or not.

If no PBX is used the configuration is very simple:
1. Select the template corresponding to the country. In this template all settings for the

country should be predefined (CountryCode, AreaCode, CountryPrefix,
AreaPrefix).

2. Set all DialPrefix fields as blank entries "".
3. Also leave the ExtensionNumber blank.
4. Insert the PhoneNumber.
5. Insert the DialRules: typically Tone,NoWaitForDialTone.

If a PBX is used the configuration depends on the properties of the PBX.

1. Select the template corresponding to the country. In this template all settings for the

country should be predefined (CountryCode, AreaCode, CountryPrefix,
AreaPrefix).

2. The PBX may require some prefixes you have to dial to get an outside line. Furthermore,
some PBX require different prefixes for different call types; others require the same or
nothing for the call types. Our location defines three call types:
a). Internal call (InternalDialPrefix): the call resides inside the PBX.
b). Local call (LocalDialPrefix): the call has the same area code as the location.
c). Long distance Call (LongDialPrefix): the call goes outside the area code.
When the same prefix is used for different call types, insert the prefix in each prefix field.
When no prefix is used for a call type, leave it blank.

3. PBX typically define a range of internal numbers, which can be called to get a person
inside the PBX, e.g. from the number 123456-200 you can dial 300 instead of 123456-
300. In this example the last three digits are called Extension Number and the first five
digits are the phone number (the same for all extensions inside the PBX).
If your extension defines internal (short) numbers, fill both fields PhoneNumber and
ExtensionNumber with the right numbers.

4. Insert the Dial Rules: typically Tone,NoWaitForDialTone.
The value Pulse for pulse dialling method is used by old PBX only. But check whether
your PBX supports dial tone recognition or not.

3.2.1 How the Modem dials
There are several events where the Tixi Alarm Modem has to dial a phone number, e.g. for
internet connections, fax or SMS.
All these recipient numbers have to be inserted in canonical (international) format like
+CountryCode-AreaCode-PhoneNumber

Referring to the location details, the modem checks if the recipients number is
- in the same country
- in the same area
- within the same PBX

and therefore dials only the necessary part of the number.

TiXML Reference Manual

 45

Example:
1. The Modem location is set to

<Location>
<CountryPrefix _="00"/>
<CountryCode _="49"/>
<AreaPrefix _="0"/>
<AreaCode _="30"/>
<LocalDialPrefix _=""/>
<LongDialPrefix _=""/>
<PhoneNumber _="12345678"/>
<InternalDialPrefix _=""/>
<ExtensionNumber _=""/>
<DialRules _="Tone,NoWaitForDialTone"/>

</Location>

a) If the recipient is “+49-30-5555555” the modem will only dial “5555555” (phone number)
because the CountryCode and AreaCode are the same.
b) If the recipient is “+49-40-4444444” the modem will dial “0 40 4444444” (area prefix, area
code and phone number) because the CountryCode is the same but the AreaCode is
different.
c) If the recipient is “+44-170-3333333” the modem will dial “00 44 170 3333333” (country
prefix, country code, area code and phone number) because all settings are different.

2. The Modem location is set to

<Location>
<CountryPrefix _="00"/>
<CountryCode _="49"/>
<AreaPrefix _="0"/>
<AreaCode _="30"/>
<LocalDialPrefix _="9"/>
<LongDialPrefix _="1"/>
<PhoneNumber _="12345678"/>
<InternalDialPrefix _=""/>
<ExtensionNumber _=""/>
<DialRules _="Tone,NoWaitForDialTone"/>

</Location>

a) If the recipient is “+49-30-5555555” the modem will only dial “9 5555555” (local dial prefix
and phone number) because the CountryCode and AreaCode are the same.
b) If the recipient is “+49-40-4444444” the modem will dial “1 0 40 4444444” (long dial prefix,
area prefix, area code and phone number) because the CountryCode is the same but the
AreaCode is different.
c) If the recipient is “+44-170-3333333” the modem will dial “1 00 44 170 3333333” (long dial
prefix, country prefix, country code, area code and phone number) because all settings are
different.

TiXML Reference Manual

 46

3. The Modem location is set to
<Location>

<CountryPrefix _="00"/>
<CountryCode _="49"/>
<AreaPrefix _="0"/>
<AreaCode _="30"/>
<LocalDialPrefix _=""/>
<LongDialPrefix _=""/>
<PhoneNumber _="123456"/>
<InternalDialPrefix _="!"/>
<ExtensionNumber _="789"/>
<DialRules _="Tone,NoWaitForDialTone"/>

</Location>

a) If the recipient is “+49-30-123456-111” the modem will only dial “! 111” (internal dial prefix
!=FLASH, and extension number) because the CountryCode, AreaCode and phone number
are the same.

3.3 Device's User Data
The Tixi Device has a database called “USER" which contains some modem related settings.
This includes the settings for GSM, redial and for call acceptance.

Database path: /USER/USER

<USER>

<Handshake _="RTSCTS"/>
<InitString0 _="ATX3M1L1"/>
<ModemProtocol _="default"/>
<IsdnDataChannelID _="*"/>
<IsdnFaxChannelID _="*"/>
<DChannelProtocol _="DSS1"/>
<ModemListenMode _="OFF"/>
<ModemParams _=""/>
<BoxName _="Tixi Device-ID"/>
<BoxNumber _="+49-30-1234567"/>
<TimeZone _="+0100"/>
<MaxDialAttempts _="3"/>
<MemForInMails _="0"/>
<RedialDelay _="60s"/>
<RingCounter _="0"/>
<LogInComCalls _="1"/>
<AccountQuery _="*100#"/>
<AccountExpiry _="*101*1#"/>
<AccountResponse _="amount:Guthaben:;valid:am;format:dd.mm.yyyy"/>
<Pin1 _="1234"/>
<GPRS _="Off"/>

</USER>

Insert your own data

TiXML Reference Manual

 47

 Name Description
Handshake

COM-Port Handshake for TiXML communication.
 RTSCTS Hardware Handshake (default)
 XONXOFF Software Handshake

BoxName Name of the Tixi Device when it is used for sending Express-E-
Mail and as well in Fax message headlines. The BoxName is
also used as the hostname for DHCP entries.

BoxNumber Canonical phone number of the Tixi Alarm Modem. It identifies
the phone network connection of Tixi Alarm Modem when it is
used for Express-E-Mail as well in Fax message headlines.
Syntax: CountryIDAreaCodeLocalPhoneNumber

TimeZone Time zone where the Tixi Device is located. The value is the
difference in hours and minutes from GMT. Syntax: +/-HHMM

MaxDialAttempts Maximum number of dial attempts 1...10. 1 is recommended as
redial should rather be configured by the SendMail command.
See chapter 3.7.1.

RedialDelay Time to wait between dial attempts in seconds 30s...255s
The timer starts after the failed sendmail.

IsdnDataChannelID Multiple Subscriber Number (MSN) for ISDN data calls.
* answers on all numbers (default).
nn MSN of the device (up to 16 digits)

RingCounter Number of rings until Tixi Alarm Modem answers an incoming
call. This doesn’t affect SMS receipt.

0 Ignore all incoming calls
1....10 ring counter.

LogInComCalls Enables the logging of all incoming calls into the
“IncomingMessage” Logfile.

0 disable logging calls
 1 enable logging calls

AccountQuery String to query the SIM card credit
Germany: e.g. *100# (D1,D2,O2,Eplus)
empty: deactivated
Outside germany AccountResponse may be required.

AccountExpiry

String to query the SIM card expiration date, not necessary if
identical to AccountQuery.
Germany: e.g. *100# (D2,Eplus), *101*1# (D1), *102# (O2)
empty: deactivated
AccountResponse required.

AccountResponse

Response parser for AccountQuery and AccountExpiry.
Format:
"amount:[word before credit];valid:[word before
expiry];format:[expiry format]”

Pin1 The PIN for the GSM – modem phone card.
Pin2 A second PIN for the GSM – modem phone card, if required.
GPRS Switches between GSM-CSD and GPRS functionality.

 Off: GPRS deactivated (default)
 On: GPRS activated

Note: If GPRS is activated, only TCP/IP communication is
possible (Email, HTTP, TFTP, TiXML). Services for sending
SMS, Fax, Express-E-Mail, Pager and dial in for TransMode or
remote configuration are inaccessible.

Note: The GSM PIN is not deleted by a factory reset! To delete the GSM PIN it is necessary
to overwrite it with an empty value.

TiXML Reference Manual

 48

Contacts

3.4 Address Book
Each message created by the Tixi Device must include a sender and one or more recipient
addresses. The Tixi Device provides an address book for all recipients and senders of
messages. So if you create different messages which are sent to the same recipjent you can
use the same contact in the message job templates. This is a simple way to manage your
addresses and reduce errors on configuration.

We recommend using not more than 100 addressbook entries.

The address book is stored in the 'TEMPLATE' database. Each contact can contain
addresses for different transports (SMTP, SMS, TextFax etc).

Database path: /TEMPLATE/AddressBook

<AddressBook>

<MySelf>
<Email _="user@domain.com"/>
<Express-Email _="TAM+49-30-1234567"/>
<SMS_No _="+49-30-1234567"/>
<Fax _="+49-30-1234567"/>

</MySelf>
<Contact_0>

<Email _="office@domain2.com"/>
<Express-Email _="TAM+49-30-7654321"/>
<SMS_No _="+49-174-1234567"/>
<SMS_Provider _="D2"/>
<Fax _="+49-30-7654321"/>
<CityRuf _="3949000"/>
<Pager_Provider _="CityRuf"/>
<URL _="http://www.devicecontrolnet.com/notification/">
<URLPort _="80"/>
<User _="WebAccess"/>
<Password _="WebAccessPwd"/>

</Contact_0>
</AddressBook>

Contact
Syntax:

<ContactName>
List of Address Entries

</ContactName>

Description:
Attribute group which defines a symbolic address as a contact. The symbolic address
can be used as sender and recipient of messages.

Elements:
ContactName:

Name of the contact. This is the symbolic address inserted in the message job
templates. It must be unique in the address book.

List of Address Entries:
List of attributes defining the addresses of the contact for the different transports.

TiXML Reference Manual

 49

Example:
Contact 'MySelf' used as sender for the messages. 'MySelf' is the symbolic address. An
internet address, a SMS address a Fax address are defined.

<MySelf>

<Email _="tam@domain.com"/>
<Express-Email _="TAM+49-30-1234567"/>
<SMS_No _="+49-30-1234567"/>
<Fax _="+49-30-1234567"/>

</MySelf>

There are several address entries. These entries correspond to a certain message transport
type (SMTP, FAX, SMS, Express-E-Mail, CityRuf, HTTP notification). You can insert one set
of address entries for each transport type within one contact.
<Contact_0>

<Email _="office@domain.com"/>
<Express-Email _="TAM+49-30-7654321"/>
<SMS_No _="+49-174-1234567"/>
<SMS_Provider _="D2"/>
<Fax _="+49-30-7654321"/>
<URL _="http://www.devicecontrolnet.com/notification/">
<URLPort _="80"/>

 <User _="WebAccess"/>
 <Password _="WebAccessPwd"/>
</Contact_0>

Name Description
Email Internet address of the contact (e.g. tam@domain.com).

If an AddressBook entry contains more than one email entry,
the email will be sent to all receivers.

SMS_No SMS telephone number of the contact (e.g. +49-161-1234567).
May be entered in short number format (e.g. “8888”) or
canonical format, if the NumberFormat in the SMS-Provider is
configured (see chapter 3.10).

SMS_Provider Name of the SMS provider used when the contact is a SMS
recipient. In this case the related SMS dial in number of the
provider is used. See chapter 3.10

Fax Fax number of the contact (for example +49-30-1234567)
written in canonical format:
+CountryCode-AreaCode-LocalPhoneNumber

Express-Email Express-E-Mail address of the contact (for example TAM+49-
30-1234567). This is inserted into the header of Express-E-
Mails. It consists of the Tixi user name and the international
phone number of the receiving Tixi Device. The canonical
phone number format is:
+CountryCode-AreaCode-LocalPhoneNumber

CityRuf CityRuf number of the contact, for example 3949000.
Pager_Provider Name of the pager provider used when the contact is a pager

recipient. In this case the related pager dial in number of the
provider is used. See chapter 3.10

URL

URL of the HTTP server that receives and processes upcoming
alarms. A slash "/" must be at the end of the URL, if a folder ist
requested.

URLPort TCP/IP port of the HTTP server.
User Username to get access to the webserver specified by URL.
Password Password to get access to the webserver specified by URL.

Address entry

mailto:tam@domain.com

TiXML Reference Manual

 50

Insert your own data

For each recipient of your messages you have to prepare the addresses of the transports by
which you want to send messages to him.

3.5 Internet Access (ISP)
The Tixi Device provides the ability to send emails via the Internet. Tixi Data Gateway does
this via its LAN connection and Tixi Alarm Modem calls a dial-in node of an Internet Service
Provider (ISP) and establishes a TCP/IP connection to the Internet. This TCP/IP connection
is embedded into a Point to Point Protocol (PPP) connection which is established between
Tixi Alarm Modem and the dial-in node of the ISP. Tixi Alarm Modem GSM may also use a
GPRS connection to communicate with the internet.
When the TCP/IP connection is ready the Tixi Device uses the SMTP server of the provider
to send email. The related ISP data has to be configured in the 'ISP' database in the 'ISP'
section.

Database path: /ISP/ISP

<ISP>

<PPPComm>
<PPPUserName _="user"/>
<PPPPassword _="pass"/>
<AuthentFlags _="3"/>
<FirstDNSAddr _="194.25.2.129"/>
<SecondDNSAddr _="193.158.131.19"/>
<KeepConnected _="24h">
<EchoInterval _="1m"/>
<EchoTimeout _="30s"/>
<EchoTarget _="www.google.de"/>
<OnTCPError _="KeepConnected">

</PPPComm>
<SMTP>

<Flags _="ESMTP"/>
<mailserver_name _="domain.com"/>
<mailserver_ip _="192.168.0.1"/>
<Port _="25"/>
<Username _="user"/>
<Password _="pass"/>
<ownhost_ip _="[®/Ethernet/AssignedIP;]"/>

</SMTP>
<POP3>

<mailserver_name _="domain.com"/>
<Port _="110"/>
<Username _="user"/>
<Password _="pass"/>
<Flags _="DontDelete"/>
<Filter _="string"/>
<Lines _="50"/>

</POP3>
<Modem>

<RemotePhoneNumber _="+49-30-1234567"/>
<MediaType _="DATA"/>
<ModemProtocol _="syncPPP"/>

</Modem>
<GPRS>

<APN _="web.vodafone.de"/>
</GPRS>

</ISP>

TiXML Reference Manual

 51

Name Description
PPPUserName User name of the PPP log-in (provided by the ISP).
PPPPassword Password of the PPP log-in (provided by the ISP).
AuthentFlags PPP authentication method:

1 PAP (plain text) only
2 CHAP (challenge handshake) only
3 auto

FirstDNSAddr IP of DNS #1 (provided by your ISP, omit if dynamic)
SecondDNSAddr IP of DNS #2 (provided by your ISP, omit if dynamic)
KeepConnected Time the Tixi Alarm Modem will stay online after successfully

completing the last message job during the connection. Usefull
to get a permanent GPRS connection initiated by “Connect“
EventHandler (see chapter 3.7.1).

EchoInterval Interval in which the modem will ping the EchoTarget to check
the IP communication.

EchoTimeout Timout after which the IP communication check failes.
EchoTarget ICMP host used by the IP communication check. Can be

specified as FQDN or IP address.
OnTCPError Controls the behaviour on TCP errors, if connection is kept

online using "KeepConnected".
 Disconnect: Reestablish connection on TCP errors
 KeepConnected: Ignore TCP errors

SMTP/Flags Enter value “POPBeforeSMTP" if you need POP3-before-SMTP
authentication.
Enter value “ESMTP” if you need SMTP authentication.

mailserver_name Domain name of senders email address or name or IP address
of POP3/SMTP server.

mailserver_ip Name or IP address of POP3/SMTP server.
Port TCP port of the SMTP/POP3 server.

Defaults:
 POP3: 110
 SMTP: 25

SMTP/Username Only for ESMTP: User name for the ESMTP server (provided by
the ISP)

SMTP/Password Only for ESMTP: Password of the ESMTP server (provided by
the ISP)

ownhost_ip Hostname or IP of the the Tixi Device, used by HELO command
POP3/Flags Enter value “DontDelete" to prevent deleting mails at ISP.
POP3/Username User name for the POP3 server (provided by the ISP)
POP3/Password Password of the POP3 server (provided by the ISP)
Filter Filter word to be found within the collected email, otherwise the

modem will ignore the email.
Lines Number of lines the modem will search for the filter word.

TiXML Reference Manual

 52

RemotePhoneNumber International phone number to call the ISP's dial-in node or
code for GPRS connection.

The format of the international phone number is:
+CountryCode-AreaCode-LocalPhoneNumber

GSM Note: Most ISP offer a different phone number for calls
from the GSM network. Please contact your ISP to get the GSM
number if you are using a Tixi Alarm Modem GSM.

Common GPRS dialup code: *99***1#

ModemProtocol ISDN/GSM-Protocol used to connect to the ISP.
Values:
“default" (uses V.32 or X.75-NL)
“X.75-NL"
“syncPPP"
“V.120"
“V.110” (for GSM)
“X.75-T.70"
“ML-PPP"
“HDLC-Transp"
“BYTE-Transp"

GPRS/APN Access Point Name of the GPRS backbone.

Note: For Tixi Data Gateway the ISP groups “PPPCom” and “Modem” must be created (may
be empty) for historical reasons.

3.6 Access rights
You can protect the access to the Tixi Device against unauthorized access. The factory
configuration of the Tixi Device has no protection activated, so if you forget the password,
you can always gain access to Tixi Device by using the hardware factory reset.

There are three levels of protection:

• no protection (no Login is required, factory default)
• password protection (a password is required for login, user name is empty)
• user aware protection (a user name and a password are required for login)

Login with CallerID verification is only available for remote switching (see chapter 9.5).

Within the AccRights group it is possible to define access groups with different access types
(services) and assign users to these groups. The password may be encrypted
(Base64+ThreeWay or Keyed-MD5).

The “AccRights” are part of the USER database:

Database path: /USER/AccRights
Access Rights

Syntax:
 <AccRights>

<Groups>
<Groupname>
 <Service AccLevel="Level"/>
</Groupname>

</Groups>

TiXML Reference Manual

 53

<User>
 <Username Plain="PlainPwd" Group="UserGroup" />
 <OA_nnn Plain="PlainPwd" Group="UserGroup" />

 <Username Pwd="Pwd" Group="UserGroup" Callback="number"/>
 <Def_Service Pwd="Pwd" Group="UserGroup"/>
</User>

 <AccRights>

Description:
Configuration of access rights. Each user is assigned to an access group. The access
group specifies the accessible services and access levels.

As soon as a “username” is defined, all services are locked.
To unlock services for everyone a “Def_“ user without password has to be defined for
these services.

A user also gets access to all services that are not expicit denied within his group.
To prevent this, these services has to be locked by AccLevel=”-1”.

If a user is member of two groups and a service is disallowed in his first group but
allowed or not specified in his secound group, he will get access. Disallowed services
have to be blocked in all assigned groups.

For TSAdapter access rights at least an user ADMIN has to be configured.

Elements:
Groupname: Name of an access group. Serveral access groups with different
 services may be defined.

Service: Service that may be accessed by this group:

 LocalLogin local access via serial port
 RemoteLogin access via dialin
 EthernetLogin access via TCP/IP (TiXML)
 CardLogin access via SD-Card
 Message access via incoming message
 WebServer access to the webserver
 TFTP access via TFTP
 TSAdapter access via TS-Adapter (only Hx71/Hx76)

Level: Access Level of this group for the specified service.
 -1 access protection disabled
 1 access protection enabled
 >1 group access level

Username: Name of an user with access rights or email alias (see chapter 9.5
 for more details).

OA_nnn: CallerID or email address used to secure remote switching
 (see chapter 9.5 for more details).

PlainPwd: Password assigned to an user (plain text). Maximum 79
 characters, for service “message” maximum 25 characters.

Pwd: Password assigned to an user (encrypted, Base64+ThreeWay or
 Keyed-MD5). Maximum 59 characters.
UserGroup: List of groups (see groupname) the user will have access to

TiXML Reference Manual

 54

 (separate by comma).

Number: Callback number for TSAdapter service (only devices with MPI
 interface)

Def_Service: Default user for each service. Replace “Service” by service name.
 Default user will be used if login username is unknown or empty.

Example:
 Three groups are defined: Group “login” is used for configuration access to the device,
 group “RemoteControl” is used for processing incoming messages, group “Step7” is
 used for Siemens S7-300/400 TeleService access.

 User Tom is member of group “RemoteControl”, therefore he can send messages to the
 Tixi Device but he cannot login to the device.

 Remote switching with the password "TIXI" is only valid from a mobile phone with the
 number +491721234567.

 User Paul is member of group “Login” and “RemoteControl”, therefore he has full access
 to all services.
 The technicians “Martin” and “Daniel” are not defined but they may use the passwords
 “Winter” for remote control and “Summer” for local login (default access).
 User ADMIN is able to access a connected S7-300/400 PLC via callback using the
 Step7 TeleService software.

<AccRights>

<Groups>
<Login>
 <LocalLogin AccLevel="1"/>
 <RemoteLogin AccLevel="1"/>
 <EthernetLogin AccLevel="1"/>
 <CardLogin AccLevel="1"/>
 <Message AccLevel="-1"/>
 <WebServer AccLevel="-1"/>
 <TFTP AccLevel="-1"/>
 <TSAdapter _="-1"/>
</Login>
<RemoteControl>
 <Message AccLevel="1"/>
 <WebServer AccLevel="10"/>
</RemoteControl>
<Step7>
 <TSAdapter _="1"/>
</Step7>

</ Groups>
<User>
 <Tom Plain="Spring" Group="RemoteControl" />
 <OA_491721234567 Plain="TIXI" Group="RemoteControl" />

 <Paul Pwd="Agshezg435G73gg723==" Group="Login,RemoteControl" />
 <Def_RemoteLogin Plain="Winter" Group="RemoteControl"/>
 <Def_LocalLogin Plain="Summer" Group="Login"/>
 <Def_CardLogin Plain="Summer" Group="Login"/>
 <ADMIN Plain="Autumn" Group="Step7" Callback="+491721234567"/>
</User>

<AccRights>

3.7 Event Handler

TiXML Reference Manual

 55

Event Handler
Commands

Event Handler Group

The general instructions are defined in the 'EVENTS' database. The content of this database
configures the event handler of the Tixi Device. The database contains some attribute
groups. Each group is named by an event and contains processing instructions as attributes.
These instructions are processed by the event handler from top to bottom.
We recommend using not more than 100 events.

The following example shows the configuration for two events 'Alarm_0' and 'Alarm_1',
each has its own commands:

Database path: EVENTS/EventHandler

<EventHandler>

<Alarm_0>
<SendMail _="MessageJobTemplates/Alarm_0"/>
<SendMail _="MessageJobTemplates/Alarm_1"/>

</Alarm_0>

<Alarm_1>
<SendMail _="MessageJobTemplates/Alarm_1"/>

</Alarm_1>

</EventHandler>

Event Handler Configuration
Syntax:

<EventName>
CommandList

</EventName>

Description:

Attribute group which defines the instructions to be processed each time the event
handler is triggered by a DoOn command or an EventState (chapter 6.2).

Elements:
EventName:

Name of the event triggered by the DoOn command or by the process subsystem (see
chapter 0) on the event parameters).

CommandList:

List of Attributes describing commands for the event handler which are processed from
top to bottom (see next chapter).

Example:
Event handler configuration for the 'Alarm_0' event. It lets the event handler send an alarm
message defined by the message job templates 'Alarm_0' and set an output port.

<Alarm_0>
<SendMail _="MessageJobTemplates/Alarm_0"/>
<Set _="/Process/MB/IO/Q/P0" value="1"/>

</Alarm_0>

3.7.1 Commands

TiXML Reference Manual

 56

SendMail Command

Syntax:
<SendMail _="Template">

<OnOK _="OnOKEvent"/>
<OnError _="OnErrorEvent"/>
<MaxRepeat _="MaxRepetitions"/>
<Interval _="IntervalTime"/>
<ConfirmID _="ID"/>
<Timeout _="Timeout"/>
<OnTimeout _="OnTimeoutEvent"/>
<Delay _="DelayTime"/>
<Condition _="Variable"/>
<Priority _="Priority"/>
<KeepConnected _="OnlineTime"/>

</SendMail>

Description:
Event handler command. It lets the event handler send a message using the given
message job template (see chapter 3.9).

Elements:
Template

Name of the message job template which is used to generate the message job for this
event.

OnOKEvent
Name of the event to be triggered when the sending of the Template message job didn't
fail or a confrmation massage was received. If empty or omitted, nothing happens in that
case.

OnErrorEvent
Name of the event to be triggered when the sending of the Template message job
failed. If empty or omitted, nothing happens in that case.

MaxRepetitions

Determines how many attempts are made to execute the Template message job before
OnOK, OnError or OnTimeout will be triggered.
(Requires Interval)

IntervalTime
Determines the delay between the attempts of MaxRepetitions. Default is 30s. Timer
starts after failed sendmail.

ID
The ID (0-65533) is used as identification for the message if a confirmation is requested.
See next page for details about message confirmation.

Timeout
Determines after which time the OnTimeout event is invoked.
Timer starts with begin of sendmail.

OnTimeoutEvent
Name of the event to be triggered when the message was successfully sent but no
confirmation was received after the time determined in Timeout. If empty or omitted,
nothing happens in that case.

TiXML Reference Manual

 57

DelayTime
Delays the sending of the messsage for the given time.
Timer starts with created message.

Variable
 Condition for message dispatch. If the bit variable value specified by the path is 1
 (TRUE), the message will be sent immediately. If the value is 0 (FALSE) the sending of
 the message will be delayed according to DelayTime.

 Supported variable types: External variables, process variables, elements of the
 "/Process/MB/" tree excluding its subfolders.

 Not supported variable types: database entries, Tixi Device I/Os.

 The condition can be checked again by using the EventHandler command
 CheckJobConditions (see below).

Priority
Sets a priority for the alarm. If several alarms are activated at the same time, the device
will send out the alarm with the highest priority (255 = highest) at first. Possible priorities:
1-255

OnlineTime
Defines how long the modem will keep the PPP connection established, after complete
sending of the email. (SMTP only)

Example:
Event handler configuration for the 'Alarm_0' event. It lets the event handler send a
message with priority 2 using the template 'Alarm_0'. If sending of the message fails two
times, the alarm will be retriggered (loop). If it was sent successful, the Tixi Device will wait
10 minutes for a confirmation message. If the confirmation is missing, the alarm will be
retriggered (loop).

<Alarm_0>
 <SendMail _="MessageJobTemplates/Alarm_0">

 <OnError _="Alarm_0"/>
 <MaxRepeat _="1"/>
 <Interval _="180s"/>
 <ConfirmID _="1"/>
 <Timeout _="10m"/>
 <OnTimeout _="Alarm_0"/>
 <Priority _="2"/>

 <SendMail/>
</Alarm_0>

Alarmcascading with OnOK, OnError, OnTimeout
The three cascading commands can be used seperately or combined.

• OnOK will be triggered if the message was sent successfully.
• OnError will be triggered if the message failed to create or transmit.
• OnTimeout will be triggered if the message was not acknowledged within timeout

time.

Note:

• OnOK combined with OnTimeout will be triggered if the message has been
acknowledged.

• OnTimeout will not be triggered if the message failed to create or transmit; therefore
we recommend combining OnTimeout with OnError.

TiXML Reference Manual

 58

• If the OnTimeout timeout is shorter than the time for all MaxRepeat intervals,
OnTimeout may be triggered even if the message was not sent successfully.

Confirmation of messages

A successfully sent message is not always a guarantee that the message has reached the
recipient. To check this it is possible to request a confirmation from the recipient. The
confirmation request is activated with the line <ConfirmID _="ID"/> together with the
OnTimeout attribute. The ID (0-65533) is an identifier for the sent message. The
ConfirmID has to be included in the message in form of the “_Fingerprint” variable.

In this message text template the fingerprint is included in the subject of the message.

Database path: /TEMPLATE/UserTemplates

<Message_0>
 <Subject>
 <C _="Alarm! Confirmation needed: ®~/_Fingerprint; "/>
 </Subject>
</Message_0>

An event handler using this message may have the following form:

Database path: /EVENTS/EventHandler

<Alarm_0>

<SendMail _="MessageJobTemplates/Alarm_0">
<Interval _="120s"/>
<MaxRepeat _="2"/>
<Timeout _="180s"/>
<OnError _="ErrorLog"/>
<OnTimeout _="TimeoutLog"/>
<OnOK _="OKLog"/>
<ConfirmID _="100"/>

</SendMail>
</Alarm_0>

The message would look similar to this:

Alarm! Confirmation needed: CID2VeFhc7SyfaJMT/h

The confirmation is performed by the Confirm command of an event handler. There are two
ways to invoke this event handler:

1. As a reply/forwarded message with the received subject included. The Tixi Device

searches the text of received SMS and the subject lines of Email or Express-E-Mail
messages for a fingerprint. In this fingerprint the confirmation ID, the date and the time is
encrypted. So it is not possible for an unauthorized person to fake a confirmation.
Furthermore, since every fingerprint is unique, it is not possible to use a received
fingerprint twice for confirmation. If a fingerprint was received by the Tixi Device, it
invokes a special system event /System/Confirmation (see chapter 3.7.3) which has
to contain the Confirm command and may contain additional commands (such as
logging or switching via set command).

TiXML Reference Manual

 59

The Confirm command performs the
confirmation of the message identified
by the confirmation ID

The event parameter _ConfirmID
is generated from the fingerprint

Database path: /EVENTS/EventHandler/System

<EventHandler>
<System>
 <Confirmation>
 <Confirm _="®~/_ConfirmID"/>
 <Log _="Event">
 <ConfirmID _="®~/_ConfirmID"/>
 </Log>
 </Confirmation>
 ...
</System>
...

<EventHandler>

2. The second way to invoke the confirmation event is to invoke it directly, using a DoOn
command (chapter 0) or as an event in a command message (chapter 8) or via port
change or service button (chapter 6).

Example:

The service button has to be pressed by the service personal to confirm the alarm and
log the time of arrival.

Database path: /EVENTS/EventHandler/System

<EventHandler>

 <System>
<OnButton>

 <Confirm _="101"/>
 <Log _="Event">
 <Service _="Pressed upon alert by message 101"/>
 </Log>

</OnButton>
 ...
</System>
...

<EventHandler>

ConfirmID of
EventHandler

TiXML Reference Manual

 60

Set - Set System Property
Syntax:

<Set _="Path" value="Value"/>

Description:

Set the Value of the system properties referred by the Path.

Note: There are many System Properties which are read only!

The System Properties are the set of data describing a Tixi Device. This includes
administrative information like version numbers, licenses etc. which are defined at the
creation time of the firmware, as well as information on the hardware configuration and
the system state. The system state includes the system time, the system mode the
states of the I/O ports, PLC variables etc. The configuration settings defined by the
SetConfig are a part of the system state and therefore a part of the system properties.
They can therefore also be accessed by the Set command. The difference to the
SetConfig command is the way the data is addressed and the structure of the data
set. Both commands use a slash separated path to address the data but “Set”
addresses a single value only where “SetConfig” addresses complex values, for
example a complete attribute group.

A second difference is in the data itself. All System Properties have a unique address
defined by their path. Configurations contain parts which have no unique addresses: For
example the PLC “External” could contain several “Devices” on a “Bus” which all
have the same tag name “Device”. In this case an element can't be addressed uniquely
by a path. Therefore, not all elements of the configuration can be addressed by the Set
command. Use SetConfig instead.

Parameters:
Path:

Path which addresses the system properties. See chapter 12 for details on system
properties.

Value:

Value to set. The syntactical format depends on the value to set. See chapter 12 for
details on system properties.
The value may be created by references. The value string is limited to 80 characters.

Example:
Set the relais output of a Tixi Device.

 <Switch_0>
 <Set _="/Process/MB/IO/Q/P2" value="1"/>
 <Switch_0>

TiXML Reference Manual

 61

Log Command
Syntax:

<Log _="LogfileName">
 LogData
</Log>

Description:

Creates an entry like this in the Journal database:

<ID_nnn time=_"TimeStamp">

LogData
</ID_nnn>

nnn:
 Unique ID to address the log entry.

TimeStamp:
 System time when the log entry has been written.

Note: The Log command can only be used for logfiles defined with the content type
 “XML".
Elements:
LogData:

XML formatted data to be logged.

LogfileName:

Name of the logfile to be used. Must be defined in the LogDefinition database.

Note: You can insert attributes with references to any system property like.
 <Input_P4 _="®/Process/MB/IO/I/P4"/>
 The reference will then be replaced by the corresponding value.

Example: Event handler logging the last power off and last power on time.

<SupportLog>
<Log _="SupportLog">

<PowerOff _="®/TIMES/PowerOffTime;"/>
<PowerOn _="®/TIMES/PowerOnTime;"/>

</Log>
</SupportLog>

BinLog Command
Syntax:

<BinLog _="LogfileName">
 <ValueName _="Value"/>
 <ValueName _="Value"/>
 ...
</BinLog>

Description:
Creates a binary logfile entry with the structure of a given record.

Note: The BinLog command can only be used for logfiles defined with the content type
 “binary" and an assigned record.

TiXML Reference Manual

 62

Elements:
LogfileName:

Name of the logfile to be used. Must be defined in the LogDefinition database.

ValueName:
 Name of value defined in record database (option)

Value:
 Value to be written into the structure. (option)
Example: Event handler logging a digital input if the Tixi Device.

<Datalogging_1_Log>
<BinLog _="Datalogging_0">

<Input4 _="®/Process/MB/IO/I/P0;"/>
</BinLog>

 </Datalogging_1_Log>

Process Command
Syntax:

<Process>
 Instruction List
</Process>
or
<Process _="ProcessVariableName"/>

Description:
Processes the instructions of the given instruction list or calculate the specified
process variable.

Elements:
Instruction List:

List of instructions calculating the value of the process variable (for a description of
instructions see Configuring Process Variables chapter 6.2).
Strings are currently not supported.

Note:
To process a variable given by the event parameter you can use the data path (~/) as
address parameter of the instruction:
Example:

Assume the event command:

<DoOn _="Switch_1">

<PortValue _="1"/>
</DoOn>

The following event handler sets the port P1 to the value given by the event
command.
<Switch_1>

<Process>
<LD _="®~/PortValue"/>
<ST _="/Process/MB/IO/Q/P1"/>

</Process>
</Switch_1>

The reference must not be ended by a semicolon in this case! Alternative
references are not supported in RPN instructions.

TiXML Reference Manual

 63

ProcessVariableName:
Name of a process variable configured in /PROCCFG/ProcessVars/. The process
variable must include the “Process” command (instead of “Value”) to be calculated
on trigger (see chapter 6.3).

Example:
Event handler sets the output port P4, logs this port and sends a message:

<Switch_0>
<Process>

<LD _="1"/>
<ST _="/Process/MB/IO/Q/P4"/>

</Process>
<Log _="Datalogging_1_Log">

<Action _="Port set"/>
<Portstate _="®/Process/MB/IO/Q/P4; "/>

</Log>
<SendMail _="MessageJobTemplates/Switch_0"/>

</Switch_0>

Event handler triggers a process variable to increase a counter:

 <Increase>

 <Process _="Counter"/>
 </Increase>

 The referenced process variable may look like this:

 <CounterValue def="0"/>
 <Counter>
 <Process>
 <LD _="/Process/PV/CounterValue"/>
 <ADD _="1"/>
 <ST _="/Process/PV/CounterValue"/>
 </Process>
 </Counter>

Delay Command
Syntax:

Instruction
<Delay _="Xs"/>
Instruction

Description:

Includes a delay between two instructions.

Elements:
Instruction:
 EventHandler command, e.g. “SendMail" or “Set" etc.

Xs: Time in seconds (1-60)

TiXML Reference Manual

 64

Example:

 Event handler sets the PLC variable 1, waits 5 seconds and processes thereafter the
SendMail.

<Switch_1>
 <Set _="/Process/Bus1/Device_0/Variable_1" value="1"/>
 <Delay _="5s"/>

<SendMail _="MessageJobTemplates/Switch_1"/>
</Switch_1>

This may be usefull if a “Set" of a PLC variable is initiated by an incoming message and the
“SendMail“ should send a confirmation back to the sender including the value read after 5s to
verify the event Without the delay the answer may include the old value because the PLC-
protocol was not fast enough to process the command before creating the confirmation
message.

Confirm Command
Syntax:

<Confirm _="ConfirmID"/>
Description:

Used to confirm a message waiting for acknowledge (see SendMail parameter
“OnTimeout”).

Elements:
ConfirmID:
 ID given in SendMail command or “*” to confirm all jobs.
Example:

This EventHandler confirms a SendMail command waiting for acknowledge. The requested
ConfirmID was 99.

<Confirmation_Event>
 <Confirm _="99"/>
</Confirmation_Event>

The Confirm command is mostly used by the system events “OnButton” and “Confirmation”
(see 3.7.3).

SetConfig Command
Syntax:

<SetConfig/>
Description:

EventHandler command to change databases via incoming Email or Express-Email.
The incoming Email has to be in “plain text” format. Disable any Rich-Text, HTML or
quoted printable format option in your email program if you send a message to the
Tixi Device.
For further information read chapter 9.4.

Elements:
 No elements
Example:
An incoming message with subject “Password LoadDatabase” (Password: see chapter 9.5)
and a database included in message body will be processed by this EvantHandler:

<Switch_0>
 <SetConfig/>
</Switch_0>

POP3Query Command

TiXML Reference Manual

 65

Syntax:
<POP3Query/>

Description:

Queries a configured POP3 account (see chapter 3.5) for new emails to process
incoming messages (see chapter 9.3.5).

There must be a delay of 20s between two POP3 queries. Shorter retries are not
processed.

Elements:
 No elements
Example:
This EventHandler may be triggered periodically via scheduler to query a POP3 account for
new emails to process:

 <Switch_1>
 <POP3Query/>
 </Switch_1>

Clear Command
Syntax:

<Clear Log="Logfiles"/>

Description:

Deletes the content of one or several logfiles. (see chapter 2.4.6.6).

Elements:
Logfiles:
 Logfile or list of logfiles to be deleted. To delete several Logfiles with one command,
 separate the logfile names by comma. Use an asterisk “*” to delete all logfiles.
Example:
This EventHandler may be triggered on OnOK cascading after the logfile was sent via email:

 <Datalogging_0_Clear>
 <Clear Log="Datalogging_0"/>
 </Datalogging_0_Clear>

Reset Command
Syntax:

<Reset/>
Description:

Processes a “Reset keep” of the modem (see chapter 2.4.6.1).
Reset will be executed with a delay of 10s.

Elements:
 No elements
Example:
This EventHandler may be triggered periodically via scheduler to reset the modem.

 <Switch_2>
 <Reset/>
 </Switch_2>

TiXML Reference Manual

 66

INetTime Command
Syntax:

<InetTime/>
Description:

Queries an Internet TIME-Server to synchronize the RealTimeClock of the device.
See chapter 3.12 for more information.

Elements:
 No elements
Example:
This EventHandler may be triggered once a month via scheduler to synchronize the Tixi
Devices clock with an Internet TIME-Server:

 <Switch_4>
 <INetTime/>
 </Switch_4>

SetTime Command
Syntax:

<SetTime _="Time" TimeDiff="Difference"/>
Description:

Sets the Tixi Device clock (RTC) to the given value. May be used to synchronize the
Tixi Device time with the PLC time.

Elements:
Time:
 Time-String or reference to time string with following format:
 YYYY/MM/DD,hh:mm:ss

Difference:
 Difference between the “Time” value and the time to set. The TimeZone of the
 /USER/USER database will be added to the Difference.
 +/-HHMM
Example:
This EventHandler copies the value of the PLC time variable into the Tixi Device RTC and
adds one hour (/USER/USER/Timezone=”+0000”):

<Switch_5>
 <SetTime _="®/Process/Bus1/Device_0/Clock;" TimeDiff="+0100"/>
</Switch_5>

S0_Sync Command
Syntax:

<S0_Sync/>
Description:

This command is only used together with the S0-interface (see chapter 6.7). It
generates a synchronization impulse by the modem (e.g. via scheduler) instead of
using an external synchonization impulse. The created synchronization impulse
copies the counted S0 impulses into the counter variable.

Elements:
 No elements
Example:
This EventHandler creates an synchronization impulse:
 <Switch_6>
 <S0_Sync/>
 </Switch_6>
Beep Command
Syntax:

TiXML Reference Manual

 67

<Beep _="melody" duration="length"/>
Description:

This command activates the speaker.
Elements:
melody: selects the melody 1 – 6
length: selects the tone duration (in “ms”)
Example:
This EventHandler switches the Tixi Device speaker on for 10 minutes:

 <Switch_8>

 <Beep _="4" duration="600000"/>
 </Switch_8>

This EventHandler switches the Tixi Device speaker off (if active):

 <Switch_9>

 <Beep _="4" duration="0"/>
 </Switch_9>

GetJobs – Write Joblist to logfile
Syntax:

<GetJobs _="logfile"/>
Description:

This command writes a list of jop groups and currently active jobs into the specified
logfile.

Elements:
logfile: Logfile in which the list will be written.
Example:
This EventHandler writes the job list into the Event log:

 <Switch_10>

 <GetJobs _="Event"/>
 </Switch_10>

The logfile entry will have the same syntax as the GetJob command result. See chapter 0.

DeleteJobs – Write Joblist to logfile
Syntax:

<DeleteJobs _="logfile"/>

Description:

This command deletes all waiting (not active) jobs and writes a list of them into the
specified logfile.

Elements:
logfile: Logfile in which the list will be written.

Example:
This EventHandler deletes all waiting jobs and writes the job list into the Event log:
 <Switch_11>

 <DeleteJobs _="Event"/>
 </Switch_11>
The logfile entry will have the same syntax as the GetJob command result. See chapter 0.
TransMode – Switch to local transparent mode
Syntax:
 <TransMode format="SerialFormat" local="localSerialFormat"

TiXML Reference Manual

 68

 baud="Baud Rate" com="comport" handshake="Handshake"
 wait="timeout"/>

Description:

Switches the Tixi Device to a local transparent mode.
Data from COM1 will be routed to the selected extension com port (COM2/COM3).
Note:
This kind of transparent mode will not be aborted by a Plug&Play sequence and there is
also no idle timeout. Don’t forget to create a TransModeClose event, otherwise the
device has to be manually switched off/on to leave the transparent mode!

Elements:

See chapter 2.4.6.1 for valid command parameters (exept keep!).

Example:
This System EventHandler switches the Tixi Device into transparent mode if service button is
pressed and will leave it if pressed again:

 <System>
 <OnButton>
 <TransMode baud="2400" local="8E1" format="8E1"
 com="COM3"/>
 <If _="/Process/MB/TransMode">
 <TransModeClose/>
 </If>
 </OnButton>
 </System>

TransModeClose – Leave transparent mode
Syntax:
 <TransModeClose/>

Description:

Tells the modem to leave the transparent mode.

Elements:
none

Example:
This System EventHandler switches the Tixi Device into transparent mode if service button is
pressed and will leave it if pressed again:

 <System>
 <OnButton>
 <TransMode baud="2400" local="8E1" format="8E1"
 com="COM3"/>
 <If _="/Process/MB/TransMode">
 <TransModeClose/>
 </If>
 </OnButton>
 </System>

Connect – Establish ISP connection
Syntax:
 <Connect/>

Description:

TiXML Reference Manual

 69

Establishes an ISP connection. The connection will be kept online depending on the
KeepConnected ISP database setting (see chapter 3.5).

Elements:
none

Example:
This System EventHandler establishs an internet connection as soon as the GSM modem is
registered to the GPRS network.

 <System>
 <GPRSPrepared>
 <Connect/>
 </GPRSPrepared >
 </System>

WriteFile – Write to SD-Card
Syntax:
 <WriteFile _="Template" File="Filename" FileExistsOperation="Mode"/>

Description:

Writes the content generated by the text template to the SD-Card.

Elements:
Template

Name of the message job template which is used to generate the job for this event. See
chapter 3.9.

Filename:
 Name of the file to be created/appended on the SD-Card. Must be in 8.3 notation.

Mode:
 Defines what to do if the filename already exists.
 keep: The file will not be overwritten, writing aborted. (default)
 override: Overwrite file.
 append: Append data to the end of the existing file.
Example:
This EventHandler copies the content of a log file to the SD-Card. The unique filename is
created by the time in HEX format.

 <Switch_12>
 <WriteFile _="MessageJobTemplates/Switch_12"
 File="®/TIMES/HEXDATE.CSV"/>
 </Switch_12>

CheckJobConditions – Checks the condition of delayed SendMail jobs
Syntax:
 <CheckJobConditions/>

Description:

Checks the condition (variable) of a delayed SendMail job. If the condition is TRUE, the
message will be sent. If the condition is FALSE, delay will be continued.

Elements:
 none

Example:
This EventHandler checks the condition of delayed SendMail jobs:

TiXML Reference Manual

 70

 <Switch_13>
 <CheckJobConditions/>
 </Switch_13>

3.7.2 Conditions
The "IF" instruction is used to prevent the execution of events in special conditions. For
example it may be used to deactivate scheduled data logging during transparent mode or
external device failure.

If instruction
Syntax:

<If _="Condition">
 EventHandler commands
</If>

Description:
Processes the enclosured EventHandler commands only if the condition is equals “1”.

Elements:
Condition

 Path to a bit variable, e.g. ProcessVar
EventHandler commands:

 List of EventHandler commands (for a complete list see chapter 3.7.1).

Example:
Data logging is only processed if PLC communication is active.

 <Datalogging_0_Log>
 <If _="/Process/Bus1/Device_0/DeviceState">
 <Log _="Port" >
 <PortLog1 _="®/Process/Bus1/Device_0/Word01"/>
 <PortLog2 _="®/Process/Bus1/Device_0/Word02"/>
 </Log>
 </If>
 </Datalogging_0_Log>

IfNot instruction
Syntax:

<IfNot _="Condition">
 EventHandler commands
</IfNot>

Description:
Processes the enclosured EventHandler commands only if the condition is not “1”.

Elements:
Condition

 Path to a bit variable, e.g. ProcessVar
EventHandler commands:

 List of EventHandler commands (for a complete list see chapter 3.7.1).

TiXML Reference Manual

 71

Example:
Data logging is only processed if ethernet connection is lost.

 <Datalogging_0_Log>
 <IfNot _="/Ethernet/LinkState">
 <Log _="Port" >
 <PortLog1 _="®/Process/Bus1/Device_0/Word01"/>
 <PortLog2 _="®/Process/Bus1/Device_0/Word02"/>
 </Log>
 </IfNot>
 </Datalogging_0_Log>

3.7.3 System events
Inside EventHandler database a group “System” exists, that holds EventHandler that are not
triggered by “DoOn” command or “EventState” but by special system conditions.

System EventHandler
Syntax:

<System>
 <SystemEventName>
 EventHandler commands
 <SystemEventName>
</System>

Description:
Processes the enclosured EventHandler commands triggered by special system
conditions.

Elements:
SystemEventName
 Type of system event:

 GPRSPrepared
 Will be triggered as soon as the GSM modem is registered to the GPRS
 network. Requires GPRS=On in USER database (see chapter 3.3 and 3.5).
 OnButton
 Will be triggered as soon as the service button is pressed.
 Confirmation
 Will be triggered as soon as the modem receives a message with valid
 fingerprint (see chapter 3.7.1)
 POPInvalidPassword

 TixiInvalidPassword
 SMSInvalidPassword
 CGIInvalidPassword
 Events triggered during processing of received messages or CGI calls, if
 password was invalid (see chapter 9.3.1).

 POPInvalidEvent
 TixiInvalidEvent
 SMSInvalidEvent
 CGIInvalidEvent
 Events triggered during processing of received messages or CGI calls, if
 command was invalid or if failure during processing a valid command
 (see chapter 9.3.1).

EventHandler commands:

 List of EventHandler commands (for a complete list see chapter 3.7.1).

TiXML Reference Manual

 72

Example:
This System EventHandler establishs an internet connection as soon as the GSM modem is
registered to the GPRS network.

 <System>
 <GPRSPrepared>
 <Connect/>
 </GPRSPrepared>
 </System>

3.8 Message Text Template
You can define a template for the message text if it is clear what the event message should
say. This template can be used for all message types but typically SMS and pager templates
will only contain a subject line. The templates contains instructions for the Job Generator
which creates a mesaage from the template.

Database path: /TEMPLATE/UserTemplates

Message Text Template
Syntax:

<TemplateName>
Instruction List

</TemplateName>
Description:

Template, creating a message text. The Job Generator processes the instructions of
the template from top to bottom. The result is textual output into the message body.

Elements:
TemplateName :

Name of the template.
Instruction List:

List of instructions to be processed by the template processor. See the following
paragraphs for information on these instructions.

Example:
Typical template with subject and body. References will be resolved or lines skipped if they
include unresolveable references.A signature will be copied to the end of the message.

<UserTemplates>

<Message_0>
 <Subject>
 <C _="This is the subject line"/>
 </Subject>
 <Body>
 <E _="Beginning of message body"/>
 <E _="enter some more lines"/>
 <L _=""/>
 <E _="Date: ®/TIMES/Date,?; "/>
 <E _="--"/>
 <Include _="/D/UserTemplates/LocationText/Email"/>
 </Body>
</Message_0>

 </UserTemplates>
Note: For SMS and pager messages a single line or several lines without line break are

used. The line is defined by the message job template as subject (see Message Job
Templates chapter 3.9).
If you want to include logfiles into the message text, please see chapter 4.3.

TiXML Reference Manual

 73

The template processor uses the following instructions

Write a text line – abort on error
Syntax:

<L _="RefText"/>

Description:
Writes a text string with a Carriage Return/Line Feed - pair at the end of the line. The
text can contain references to other attributes. These references are replaced by the
values of the attributes. If the Tixi Device can’t resolve the attribute, it will stop
processing the event.

Elements:
RefText:

Text to write. The text could include some references to system properties or parameters
which are placed into the client event messages. In the output line these references are
replaced by the values of the referred attributes. A reference starts with the '®'
string and ends with a semi colon or the end of the tag.

Example:
Writes the line 'Temperature of Barn: 10 °C'. The value '10' is inserted from the client
message data attribute temperature. The degree “°” is written as an entity.

Client event message:

[<DoOn _="Alarm_0">
<Temperature _="10"/>

</DoOn>]

Template processor instruction:
<L _="Temperature of Barn: ®~/Temperature;°C"/>

Lines in the message:

Temperature of Barn: 10°C

Write a text line – continue on error
Syntax:

<E _="RefText"/>
Description:

Writes a text string with a Carriage Return/Line Feed - pair at the end of the line. The
text can contain references to other attributes. These references are replaced by the
values of the attributes. If the Tixi Device can’t resolve the attribute, it will skip the
complete line and continue processing the next line.

Elements:
RefText:

Text to write. The text could include some references to system properties or parameters
which are placed into the client event messages. In the output line these references are
replaced by the values of the referred attributes. A reference starts with the '®'
string and ends with a semi colon or the end of the tag.

TiXML Reference Manual

 74

Example:
Writes the line 'Temperature of Barn: 10 °C'. The value '10' is inserted from the client
message data attribute temperature. The degree “°” is written as an entity. Due to a missing
attribute, the Tixi Device can’t resolve all parameters.

Client event message:

[<DoOn _="Alarm_0">
<Temperature _="10"/>

</DoOn>]

Template processor instruction:
<E _="Temperature of Barn: ®~/Temperature;°C"/>
<E _="Barn: ®~/Barn; "/>

Lines in the message:

Temperature of Barn: 10°C

Line two will be skipped, because attribute “Barn” doesn’t exist.

Write a text line – no CRLF, abort on error
Syntax:

<S _="RefText"/>

Description:
Writes a text string without a Carriage Return/Line Feed - pair at the end of the line.
The text can contain references to other attributes. These references are replaced by
the values of the attributes. If the Tixi Device can’t resolve the attribute, it will stop
processing the event.

Elements:
RefText:

Text to write. The text could include some references to system properties or parameters
which are placed into the client event messages. In the output line these references are
replaced by the values of the referred attributes. A reference starts with the '®'
string and ends with a semi colon or the end of the tag.

Example:
Writes the line 'Temperature of Barn: 10°C Barn 12'. The values are inserted from the client
message data attribute barn and temperature. The degree “°” is written as an entity.

Client event message:

[<DoOn _="Alarm_0">
<Barn _="12"/>
<Temperature _="10"/>

</DoOn>]

Template processor instruction:
<S _="Temperature of Barn: ®~/Temperature;°C "/>
<S _="Barn: ®~/Barn; "/>

Line in the message:

Temperature of Barn: 10°C Barn 12

TiXML Reference Manual

 75

Write a text line – no CRLF, continue on error
Syntax:

<C _="RefText"/>
Description:

Writes a text string without a Carriage Return/Line Feed - pair at the end of the line.
The text can contain references to other attributes. These references are replaced by
the values of the attributes. If the Tixi Device can’t resolve the attribute, it will skip the
complete line and continue processing the next line.

Elements:
RefText:

Text to write. The text could include some references to system properties or parameters
which are placed into the client event messages. In the output line these references are
replaced by the values of the referred attributes. A reference starts with the '®'
string and ends with a semi colon or the end of the tag.

Example:
Writes the line 'Temperature of Barn: 10°C'. The value '10' is inserted from the client
message data attribute temperature. The degree “°” is written as an entity. Due to a missing
attribute, the Tixi Device can’t resolve all parameters.

Client event message:

[<DoOn _="Alarm_0">
<Temperature _="10"/>

</DoOn>]

Template processor instruction:
<C _="Temperature of Barn: ®~/Temperature;°C "/>
<C _="Barn: ®~/Barn; "/>

Line in the message:

Temperature of Barn: 10°C

Line two will be skipped, because attribute “Barn” doesn’t exist.

Include – Include another text template
Syntax:

<Include _="Path to Text Template"/>
Description:

Includes another Text Templates into the message. May be used to add a signature
to each message.

Elements:
Path to Text Template:

XML-Path to the template to be included.
Example:
Includes the template “LocationText" into the message text
Signature template:
 <LocationText>
 <L _="Location: "/>
 <L _="Tixi.Com GmbH"/>
 <L _="Berlin"/>
 </LocationText >

Text Template with reference to LocationText:
 <Message_0>
 <L _="Enter your message text here"/>
 <Include _="/D/UserTemplates/LocationText"/>
 </Message_0>

TiXML Reference Manual

 76

IncludeSP – Include system properties
Syntax:

<IncludeSP _="Path to system property" AddInfo="Info"
ViewProperties="Properties" format="Format"/>

Description:
Includes the system properties tree or parts of it into the message.

Elements:
Path to system property:

XML-Path to the system properties to be included (see chapter 12).
 empty: complete system properties tree
 /PATH: system properties branch or single value

Info:
 Error: Displays the error state of the variable(s) instead of its value(s).

Properties:
 Error: Displays ErrorClass and ErrorValue additionally to the value(s)
 Exp: Displays the exponent of the value(s)

Format:
 Formats the output value (see chapter 6.5.2 for instructions)

Example:
Includes the complete system property tree (similar to [<Get/>] command) into the message
text
 <Message_0>
 <IncludeSP _=""/>
 </Message_0>

Includes the process tree with Error codes:
 <Message_1>
 <IncludeSP _="/Process/" AddInfo="Error"/>
 </Message_1>

Includes the process tree with additional error and exponent information:
 <Message_2>
 <IncludeSP _="/Process/" ViewProperties="Error,Exp"/>
 </Message_2>

Includes and reformats the first digital input:
 <Message_3>
 <IncludeSP _="/Process/MB/IO/I/P0" format="?on,off" />
 </Message_3>

InludeLog – Include a XML log file
Syntax:

<IncludeLog _="LogFileName" range="entryrange"/>

Description:
See chapter 4.6 “Data logging" for complete reference and examples.

TiXML Reference Manual

 77

IncludeLogTXT – Include an reformat a log file
Syntax:

<IncludeLogTXT _="LogFileName" range="entryrange"
fillInterval="interval" maxInterval="tolerance"
fillText="string" Viewset="variables" Formats/>

Description:
See chapter 4.6 “Data logging" for complete reference and examples.

CopyDatabase – Include XML databases
Syntax:
 <CopyDatabase _="Path to database" flags="Dereferer"
 dest="Destination"/>

Description:

Copies the defined XML database(s) into the message text.

Elements:
Path to database:

Path to the XML database to be copied into the message text
 / copies the complete TiXML project
 /DATABASE/Group copies the specified database or groups

Dereferer (option):
 Defines if references are to be processed
 empty: References are not processed (default)
 Deref: References are processed

Destination (option):
 Defines XML tags enclosing the copied database.

Example:
Copies the EventHandler database into the message text:

 <Message_1>
 <L _="EventHandler Database:"/>
 <L _=""/>

 <CopyDatabase _="/EVENTS/D/EventHandler"/>
 </Message_1>

Copies the complete TiXML project into the message text, enclosed by XML-Tags
"CONFIG":

 <Message_2>

 <CopyDatabase _="/" dest="CONFIG"/>
 </Message_2>

CheckSum – Create a checksum
Syntax:
 <StartCheckSum _="CRC32"/>

Instruction List
 <StopCheckSum _="Format"/>

TiXML Reference Manual

 78

Description:
Creates a CRC32 checksum over the text created by the enclosured instructions
(including CRLFs).
The checksum can be included into the message text using a reference to the system
variable "_CheckSum".

CRC32 calculation:
 Width: 32Bit
 Polynomal: 04C11DB7
 Init Value: FFFFFFFF
 Reflection: In/Out deactivated
 XOR Out: 00000000

Elements:
Format:
 Checksum format

 X: Hexa decimal
 D: Decimal

Example:
Creates a CRC32 checksum over the message text "Hello World!":
 <Message_2>

 <StartCheckSum _="CRC32"/>
 <E _="Hello World!"/>
 <StopCheckSum _="X" />
 <E _="CRC32=®~/_CheckSum;"/>

 <Message_2>

Checksum: B43B5AC1

3.9 Message Job Template
A typical reaction to a client event is the sending of one or more messages. Each of these is
created by a message job template (MJT) which combines the sender, recipient and
message text when the event occurs. This is done by creating a message job which is added
to the message queue of a Job Generator - similar to a computers printer queue.

These templates are defined in the 'TEMPLATE' database. Each template is an attribute
group which has a unique name which has to be written as parameter of the 'SendMail'
command in the event handler configuration. The owned attribute (_="") defines the
message transport type like email, SMS, Fax, Express-E-Mail etc..

We recommend using not more than 100 message job templates because of system
performance.

TiXML Reference Manual

 79

Templates to create message jobs for a certain client event:

Database path: /TEMPLATE/MessageJobTemplates

<MessageJobTemplates>

<Alarm_0 _="SMTP">
<Recipient _="/D/AddressBook/Contact_0"/>
<Sender _="/D/AddressBook/MySelf"/>
<Body _="/UserTemplates/Message_0/Body"/>
<Subject _="Barn is out of temperature"/>

</Alarm_0>

<Alarm_1 _="SMS">
<Recipient _="/D/AddressBook/Contact_1"/>
<Sender _="/D/AddressBook/MySelf"/>
<Subject _="Barn ®~/Barn; is out of temperature.

 Temp=®~/Temperature; C. "/>
</Alarm_1>

<Alarm_2 _="GSMSMS">

<Recipient _="/D/AddressBook/Contact_0"/>
<Sender _="/D/AddressBook/MySelf"/>
<Subject _="" Path="/UserTemplates/Message_1/Subject"/>

</Alarm_2>
</MessageJobTemplates>

Message Job Template
Syntax:

<TemplateName _="TransportTypeTemplate">
List of Variables

</TemplateName>

Description:

Attribute group which defines the creation of a message job for a certain event.

Elements:
TemplateName:

Name of the template. This is the parameter of the 'SendMail' command in the event
handler configuration and must be unique within the MessageJobTemplate group.

List of Variables:

List of attributes defining some variables depending on the predefined templates.

TransportTypeTemplate:
Transportation method:

SMTP creating a SMTP message job.
SMS creating a SMS message job via landline modem.
TextFax creating a FAX message job.
Express-Email creating an Express-Mail message job.
GSMSMS creating a SMS message job via a GSM modem.
CityRuf creating a pager message.
URLSend creating a HTTP notification (GET)
CBIS creating a CBIS notification
WriteFile creating a job to write to the SD-Card

Message Job
Templates

TiXML Reference Manual

 80

Variables

Example:
This message job template creates a SMTP message job:

<Alarm_0 _="SMTP">

<Recipient _="/D/AddressBook/Contact_0"/>
<Sender _="/D/AddressBook/MySelf"/>
<Body _="/UserTemplates/Message_0/Body"/>
<Subject _="Barn is out of temperature"/>

</Alarm_0>

Note: A SMTP message can be sent to more than one recipient. This can be achieved by
more than one 'Email' entry in the referred AddressBook contact instead of adding
several "Recipients" to the MJT

The subject line of the message may be written directly into the message job template
attribute "Subject", but for software compatibility reasons we recommend to use the "path"
attribute to an user template instead (see next note):
.
<Alarm_0 _="SMTP">

<Recipient _="/D/AddressBook/Contact_0"/>
<Sender _="/D/AddressBook/MySelf"/>
<Body _="/UserTemplates/Message_0/Body"/>
<Subject path="/UserTemplates/Message_0/Subject"/>

</Alarm_0>

The variables necessary for a message job template are depending on the transportation
type. Typically you have to add the sender and receiver address, the template for the body
and the subject but some message types don't need a body or even a text at all.

Note:
The subject can be defined by three different methods:

Direct (only valid for this MJT, limited to 385 characters):
Subject is written directly into the MJT:

<Subject _="Barn is out of temperature"/>

Reference (useable for different MJTs, limited to 385 characters):
Subject is written into UserTemplates and referenced within MJT by ®:
 <Subject _="®/D/UserTemplates/Message_0/Subject;"/>

Referrenced UserTemplate:
 <Message_0>
 <Subject _="Test"/>
 </Message_0>

TiXML Reference Manual

 81

Path (useable for different MJTs, no character limitation):
Subject is written into UserTemplate and included via “Path”:
 <Subject _="" path="/D/UserTemplates/Message_0/Subject"/>

Referrenced UserTemplate:
 <Message_1>
 <Subject>
 <S _="385 characters text"/>
 <S _="add 385 characters text"/>
 <S _="add 385 characters text"/>
 …
 </Subject>
 </Message_1>

If there is additional text within _="" it will be added in front of the UserTemplates text.

SMTP
Name Description
Recipient Path to the address book entry including the email address for

the receiver of the SMTP message (inserted in the 'To' field of
the message).

Sender Path to the address book entry including the email address for
the sender (inserted in the 'From' field of the message).

Subject The subject text of the message (inserted in the 'Subject' field of
the message).

Body The Body contains the main text of the message. This is what
the receiver of the mail will read and it should contain all the
necessary information to react to the event. The Body field
contains a path to the message text template where the
message text is defined. Therefore you can use one of these
message text templates for several message job templates.

Attachments Optional attachment with logged data. See chapter 4.6.2.

TextFax
Name Description
Recipient Path to the address book entry including the fax number for the

receiver of the fax message
Sender Path to the address book entry including fax number for the

sender (inserted in the header of the fax).
Subject see SMTP
Body see SMTP

Express-Email
Name Description
Recipient Path to the address book entry including the Express-E-Mail

Address for the receiver of the Express-E-Mail message
(inserted in the 'To' field of the message).

Sender Path to the address book entry including Express-E-Mail
Address for the sender (inserted in the 'From' field of the
message).

Subject see SMTP
Body see SMTP

TiXML Reference Manual

 82

SMS/GSMSMS
Name Description
Recipient Path to the address book entry including the SMS number of

the receiver of the SMS message.
Sender Path to the address book entry including the phone number of

the sender of the SMS message.
Subject Defines the SMS message text (max. 160 character).
Body not used

CityRuf
Name Description
Recipient Path to the address book entry including the pager number of

the receiver of the pager call.
Sender not used
Subject Defines the pager message text.
Body not used

CBIS
Name Description
Recipient Path to the address book entry including the email address for

the receiver of the SMTP message (inserted in the 'To' field of
the message).

Sender Path to the address book entry including the email address for
the sender (inserted in the 'From' field of the message).

Subject not used, subject with IP-adress link is automatically created
Body not used, body will contain content of /USER/SITE_TAG

database

URLSend
Name Description
Recipient Path to the address book entry including the URL to request.
Sender not used
Subject not used
Body not used

WriteFile
Name Description
Recipient not used
Sender not used
Subject not used
Body The Body field contains a path to the text template where the

text is defined, which will be written to the file on the SD-Card.

TiXML Reference Manual

 83

3.10 SMS Provider
The ISP database contains a section SMS_Provider which configures the access to SMS
service centers. Tixi Alarm Modems are supporting script gateways using TAP or UCP and
gateways according to ETSI ES 201 912 (1TR140).

Database path: /ISP/SMS_Provider

SMS Provider
Syntax:
 <ProviderName>

 <Dialin _="SMSCNumber"/>
 <Type _="ProtocolType"/>
 <Script _="ModemScript"/>
 <NumberFormat _="Format"/>

 <SMS_ISDN _="ISDNProtocol"/>
 <Pager_ISDN _="ISDNProtocol"/>
 <SMS_Media _="Media"/>
 </ProviderName>

Description:

Attribute group which specifies a gateway to send SMS.
Elements:
ProviderName

Name of the provider. This is the parameter of the 'SMS_Provider' or 'Pager_Provider'
attrbute in the address book and must be unique within the SMS_provider group.

SMSCNumber
 Phone number of the SMS center.

ProtocolType
 This can be either
 SMS ETSI ES 201 912 (1TR140), only for PSTN modems
 Script TAP, UCP or GSM

ModemScript
 The protocol for the SMS transmission (only if Type=Script).
 Can be either
 D1_TAP TAP with format 8N1
 Mobilkom_A_TAP TAP with format 7E1
 D2_UCP UCP
 GSM using the SMSC of the SIM card.

Format
 Used to convert an canonical addressbook number into the format expected by the
 gateway, e.g. addressbook: +49-172-1234567 will be send as:
 “national”: 01721234567
 “canonical”: +491721234567

ISDNProtocol
 ISDN B-channel protocol used by SMS gateway. See chapter 3.5 ModemProtocol for
 supported values.

Pager_ISDN
 ISDN B-channel protocol used by Pager gateway. See chapter 3.5 ModemProtocol for
 supported values.

TiXML Reference Manual

 84

Media
 Must be ‘SMS’ for GSM providers.

Example:

Modem Gateways (UCP, TAP):
The following example configures the access to the SMS modem gateway of the Vodafone
Germany via ISDN:

<SMS_Provider_0>

<Dialin _="+49-172-2278025"/>
<Type _="Script"/>
<Script _="D2_UCP"/>
<NumberFormat _=”national”/>

 <SMS_ISDN _="X.75-T.70"/>
</SMS_Provider_0>

PSTN-Gateways (ETSI ES 201 912, 1TR140):
This example configures the access to the SMS PSTN gateway of the German provider
“AnnyWay”:

<SMS_Provider_1>
 <Dialin _="+49-900-3266900"/>
 <Type _="SMS"/>
 <NumberFormat _="canonical"/>
</SMS_Provider_1>

GSM-SMSCs:
This example configures the access to the SMSC stored on the SIM card of your GSM
device.

<GSM>
 <Dialin _="0"/>
 <Type _="Script"/>
 <NumberFormat _="canonical"/>
 <Script _="GSM"/>
 <SMS_Media _="SMS"/>
</GSM>

Some german SMS providers are preconfigured in our TiXML-Examples and TILA software.
Contact your local telephone company to get access to theire SMS gateways (GSM, TAP,
UCP, 1TR140).

3.11 Service center for incoming SMS
The ISP database contains a section IncomingSMSCenter which contains the callerIDs of
the service center for incoming PSTN SMS. Three entries are possible (SMSC1-3).

Example:
The following example configures the callerIDs for the german Telekom and the AnnyWay
service center.

Database path: /ISP/IncomingSMSCenter

 <SMSC1 _="0193010" />
 <SMSC2 _="09003266900" />

TiXML Reference Manual

 85

3.12 Automatic transmode
The Tixi Alarm Modem is able to redirect some (callerID) or all incoming calls to one of its
serial interfaces.

This offers transparent mode capability without need to send Login or TransMode
commands, therefore it may be possible to use dial routines of the software that needs
access to the device.

Database path: /ISP/AutoTransMode

Automatic TransMode
Syntax:

<AutoTransMode>
<NoX _="CID" transmode="comport" format="SerialFormat"
baud="Baud Rate" handshake="Handshake" wait="timeout"/>

</AutoTransMode>

Description:
1. Switches the remote Tixi Alarm Modem into transparent mode (like Modem Mode)

to routes data to the selected com port.
2. It transforms the baud rate and the serial data format from the phone line to the

values required by the connected client device.

Note: This transparent mode of the remote Tixi Alarm Modem becomes ended when the
dialup connection drops. After this the remote Tixi Alarm Modem goes back in the
TiXMLMode. Look into the manual of the dialing modem on how to disconnect
connections (escape sequence).

 A transparent mode to the host port COM1 is blocked if a local login session is
open (see chapter 0).

Elements:
X:
 Entry number. Possible values: 1 or 2

CID:
 CallerID used to trigger the automatic transmode

comport:

Specifies the COM port on the remote Tixi Device used for the connection.
COM1 Programming port (labeled COM1 RS232) (default)

 COM2 PLC port (labeled COM2 RS232 or COM2 R-485/422) (if available)
 COM3 M-Bus port (labeled M-Bus) (if available)
 COM4 PLC port (COM4 R-485/422) (if available)

SerialFormat:

String which encodes the serial format that is used between modem and client device. It
has the following syntax (default "8N1"):
DataBitsParityBitsStopBits

DataBits
8...8 data bits are used.
7...7 data bits are used.

ParityBits
N...No parity bit.
E...Even parity.
O...Odd parity.

TiXML Reference Manual

 86

StopBits
1...one stop bit.
2...two stop bits.

Baud Rate:
Used baudrate in bits per second (bps) (default 9600).

Handshake:
Used communication handshake.
 None communication without handshake
 XONXOFF software handshake
 XONXOFFPASS software handshake, XONXOFF forwarded to application
 RTSCTS hardware handshake with RTS CTS
 DTRDSR hardware handshake with DTR DSR
 HALF HalfduplexRS 485 communication
 FULL Fullduplex RS 485/422
 HALFX Halfduplex RS 485 communication with XON XOFF
 FULLX Fullduplex RS 485/422 with XON XOFF
 noDTR special DTR mode for Moeller and Mitsubishi PLCs

 Note: RS 485/422 communication is only valid on RS 485/422 interfaces.

timeout:
 Specifies the time the Tixi Device will try to disable a PLC bus protocol on the
remote com port (default: 20s).

Example:
Establish transparent mode to COM2 with 38400bps, data format 8O1 and hardware
handshake if call with callerID 0301234567 is detected and (No2) establishs transparent
mode to COM1 with 9600bps, data format 8E1 if call with callerID 0307654321 is detected:

<AutoTransMode>
<No1 _="0301234567" transmode="COM2" format="8O1"
baud="38400" handshake="RTSCTS" wait="60s"/>

 <No2 _="0307654321" transmode="COM1" format="8E1" baud="9600"
handshake="none" wait="60s"/>

 </AutoTransMode>

Establish transparent mode to COM1 with 9600bps, data format 8N1 on any call:

<AutoTransMode>
<No1 _="*" transmode="COM1" format="8N1" baud="9600"
handshake="none" wait="60s"/>

 </AutoTransMode>

3.13 Internet-Time synchronization
The Tixi Device uses a battery buffered Real Time Clock. Add following configuration to
synchronize the Clock with an Internet Time Server via DayTime Protocol (TCP port 13):

Database path: /ISP/ISP/TimeServer

TiXML Reference Manual

 87

Internet Time synchronization
Syntax:

<TimeServer>
 <ServerName _="address"/>
 <Protocol _="protocol"/>

 <TimeDiff _="difference"/>
 <TimeFormat _="string"/>
</TimeServer>

Description:
Defines the time server to query, the used protocol, the time difference and the time
format.

Elements:
address
 Address of the internet time server.
protocol
 Protocol used to query the time server.
 DAYTIME: DayTime protocol on TCP port 13
difference
 Time difference to GMT in coherence to the USER database TimeZone.
 Format: +HHMM (Default: +0000)
 Example Germany:
 The TimeZone setting in user database has to be +0100 GMT.
 To synchronize the time with a local time server, the Time Zone has to be

 subtracted from the server time, which means TimeDiff: -0100
string
 Format string that tells the modem how the DAYTIME server response will look like.

Following elements are available:
 y year
 m month
 d day
 h hour
 n minute
 s sec
 G month as string german
 E month as string english
 i ignore
 e.g.: Server response: “11 MAY 2004 12:09:15 METDST”
 TimeFormat: "d E y h:n:s "
Example:
 Time server settings to get GMT:

<TimeServer>
 <ServerName _="time.nist.gov"/>
 <Protocol _="DAYTIME"/>

 <TimeDiff _="+0000"/>
 <TimeFormat _="i y-m-d h:n:s i"/>
 </TimeServer>

TiXML Reference Manual

 88

To start the time synchronization a simple EventHandler will do the job:
<SyncTime>

<INetTime/>
</SyncTime>

A good solution can be implemented by combining the time query event with the scheduler.
This scheduler will synchronize the time every Monday:

<SyncTime _="SyncTime">
<Weekday _="Mo"/>

</SyncTime>

You can also use this feature to change the clock to winter summer time (requires a local
DAYTIME server with daylight saving time). Necessary scheduler:

 <Summertime _="SyncTime">
 <Month _="3"/>
 <Day _="25-31"/>
 <Weekday _="Su"/>
 <Time _="02:00"/>
 </Summertime>
 <Wintertime _="SyncTime">
 <Month _="10"/>
 <Day _="25-31"/>
 <Weekday _="Su"/>
 <Time _="03:00"/>
 </Wintertime>

3.14 Ethernet
The Tixi Data Gateway has a LAN interface for HTTP- and TiXML-access or email sending.
This chapter describes the TCP/IP configuration

Database path: /ISP/Ethernet

Ethernet configuration
Syntax:
 <Ethernet _="keep">
 <IP _="IP-address"/>
 <Mask _="Subnetmask"/>
 <Gateway _="GW-address"/>
 <FirstDNSAddr _="DNS-address"/>
 <SecondDNSAddr _="DNS-address"/>
 <HostName _="Host"/>
 </Ethernet>
Description:

Defines the TCP/IP settings of the Tixi Data Gateway.
Elements:
keep
 Flag to activate none volatile IP configuration written to EEProm.
 persistent: keep configuration in EEProm
 empty: don't keep confguration
IP-address
 Static IP address of the Tixi Data Gateway in “dotted quad format” or string “DHCP” to

activate dynamic host configuration protocol.
Subnetmask

TiXML Reference Manual

 89

 Subnetmask according to the IP address of the Tixi Data Gateway. Can be omitted, if
DHCP is activated.

GW-address
 Gateway IP address of the next router. Can be omitted, if offered by DHCP server.
DNS-address
 IP address of the DNS server. Can be omitted, if offered by DHCP server.
Host
 DHCP option 12 used for DDNS registration.
Example:
 Persistant IP configuration for private CLASS-C /24 network with a WAN router at
 192.168.0.1.
 <Ethernet _="persistent">
 <IP _="192.168.0.20"/>
 <Mask _="255.255.255.0"/>
 <Gateway _="192.168.0.1"/>
 <FirstDNSAddr _="192.168.0.2"/>
 </Ethernet>

 Automatic IP configuration using DHCP server.
 <Ethernet>
 <IP _="DHCP"/>
 <HostName _="TixiDevice"/>
 </Ethernet>

3.15 WLAN
The Tixi Data Gateway may have a WLAN module for HTTP- and TiXML-access or email
sending. This chapter describes the TCP/IP and WiFi access point configuration

Database path: /ISP/WLAN

WLAN configuration
Syntax:
<WLAN>
 <Profile_X SSID="SSID" BSSID="BSSID">

 <Authentication _="encryption"/>
 <Password _="WEP_key"/>

 <Ethernet>
 <IP _="IP-address"/>
 <Mask _="Subnetmask"/>
 <Gateway _="GW-address"/>
 <FirstDNSAddr _="DNS-address"/>

 <SecondDNSAddr _="DNS-address"/>
 <HostName _="Host"/>
 </Ethernet>
 </Profile_X>
</WLAN>
Description:

Defines the TCP/IP and access point settings of the Tixi Data Gateway WLAN module.

TiXML Reference Manual

 90

Elements:
X
 Profile number. A maximum of 10 access point profiles (0-9) is supported.
SSID
 Service Set Identifier of access point
BSSID
 Basic Service Set Identifier of access point (option). May be used, if SSID is hidden.
encryption
 Authentication method, currently only “Shared_WEP” is supported.
WEP_key
 WEP key used by access point (max. 128Bit).
IP-address
 Static IP address of the Tixi Data Gateway WLAN module in “dotted quad format” or

string “DHCP” to activate dynamic host configuration protocol.
Subnetmask
 Subnetmask according to the IP address of the Tixi Data Gateway WLAN module. Can

be omitted, if DHCP is activated.
GW-address
 Gateway IP address of the next router. Can be omitted, if offered by DHCP server.
DNS-address
 IP address of the DNS server. Can be omitted, if offered by DHCP server.
Host
 DHCP option 12 used for DDNS registration.
Example:
 Static IP configuration for access point with SSID “HOME” and second profile with
 automatic IP configuration for alternative AP with SSID “OFFICE”.
 <WLAN>
 <Profile_0 SSID="HOME">
 <Authentication _="Shared_WEP"/>
 <Password _="11223344556677889900AABBCC"/>
 <Ethernet>
 <IP _="192.168.0.2"/>
 <Mask _="255.255.255.0"/>
 <Gateway _="192.168.0.1"/>
 <FirstDNSAddr _="192.168.0.1"/>
 </Ethernet>
 </Profile_0>
 <Profile_0 SSID="OFFICE">
 <Authentication _="Shared_WEP"/>
 <Password _="11223344556677889900AABBCC"/>
 <Ethernet>
 <IP _="DHCP"/>
 </Ethernet>
 </Profile_0>
 </WLAN>

TiXML Reference Manual

 91

ScanWLAN – Scans for available WLAN access points
Syntax:

<ScanWLAN ver="v"/>

Description:
This command returns a lits of available WLAN access points.

Parameter:

No Parameter.

Return:

If no error (command is processed):
 <ScanWLAN>
 <APn _="" RSSI="signal strength">
 <BSSID _="MAC" />
 <SSID _="AP name" Id="0" />
 <SUPPORTED_RATES _="82 84 8b 96 24 30 48 6c" Id="1" />
 <DS_PARAM_SET _="channel" Id="3" />
 <CF_PARAM_SET _="00 02 00 00 00 00" Id="4" />
 <TIM _="00 01 00 00" Id="5" />
 <unknown _="04" Id="42" />
 [..]
 <EXTENDED_RATES _="0c 12 18 60" Id="50" />
 <unknown _="0e 18 1a ff ff 00 00 01 00 00 00 00 00" Id="45" />
 [..]
 <VENDOR _="00 10 18 02 01 f0 05 00 00" Id="221" />
 [..]
 </APn>
 [..]
 </ScanWLAN>

 n access point number (0-15)
 signal strength Signal to noise ratio
 MAC Basic service set identifier (MAC address / BSSID)
 AP name Service set identifier (SSID)
 channel WLAN channel (1-13)

On error (command is not processed):

see default error frame (chapter 2.4.4)

Example:

Get the current system time of the Tixi Device.

Client sends: [<ScanWLAN/>]
 Tixi Device responds:

[<ScanWLAN>
 <AP0 _="" RSSI="83">
 <BSSID _="00:1a:2b:1e:a0:39" />
 <SSID _="WLAN-1EA007" Id="0" />
 <SUPPORTED_RATES _="82 84 8b 96 24 30 48 6c" Id="1" />
 <DS_PARAM_SET _="01" Id="3" />
 <TIM _="00 01 00 00" Id="5" />
 <unknown _="04" Id="42" />
 <unknown _="04" Id="47" />
 <unknown _="01 00 00 0f ac 02 02 00 00 0f ac 04 00" Id="48" />

TiXML Reference Manual

 92

 <EXTENDED_RATES _="0c 12 18 60" Id="50" />
 <unknown _="0e 18 1a ff ff 00 00 01 00 00 00 00 00" Id="45" />
 <unknown _="01 05 13 00 00 00 00 00 00 00 00 00 00" Id="61" />
 <VENDOR _="00 10 18 02 01 f0 05 00 00" Id="221" />
 <VENDOR _="00 50 f2 01 01 00 00 50 f2 02 02 00 00" Id="221" />
 <VENDOR _="00 50 f2 02 01 01 80 00 03 a4 00 00 27" Id="221" />
 <VENDOR _="00 90 4c 33 0e 18 1a ff ff 00 00 01 00" Id="221" />
 <VENDOR _="00 90 4c 34 01 05 13 00 00 00 00 00 00" Id="221" />
 </AP0>
 <AP1 _="" RSSI="49">
 <BSSID _="00:19:5b:08:fb:8e" />
 <SSID _="Tixi-AP" Id="0" />
 <SUPPORTED_RATES _="82 84 8b 96 0c 12 18 24" Id="1" />
 <DS_PARAM_SET _="01" Id="3" />
 <TIM _="00 03 00 00" Id="5" />
 <unknown _="04" Id="42" />
 <EXTENDED_RATES _="30 48 60 6c" Id="50" />
 <VENDOR _="00 e0 4c 01 02 03 00" Id="221" />
 </AP1>
 </ScanWLAN>]

3.16 TiXML/IP
The TiXML protocol can be used via IP protocol. The appropriate TCP port and
communication timeout is configured in the ISP database.

Database path: /ISP/TiXML

TiXML/IP configuration
Syntax:
<TiXML>
 <Port _="TCP port">

<Timeout _="delay">
</TiXML>
Description:

Defines the TiXML/IP TCP port and communication timeout.
Elements:
TCP port
 TCP port used for communication (default 8300).
Timeout
 Timeout after which the Tixi device will close the TCP socket.

Example:
 TiXML/IP communication via TCP port 8300 with a socket timeout of 15 minutes.
 <TiXML>
 <Port _="8300">
 <Timeout _="15m">
 </TiXML>

TiXML Reference Manual

 93

3.17 Webserver, PPP-Server, TFTP-Server
Information about the Webserver, PPP-Server and TFTP-Server configuration can be found
in the "Webserver TiXML manual" (code WEB-EN).

4 Data Logging
Any operation of the Tixi Device may be logged for later review of what actually happened.
Besides the system logging a logging of process data, e.g. I/Os or PLC variables, is possible.

A maximum of 12 logfiles can be created in order not to store all data in the same place.

The LOG database therefore features two sections: LogDefinition and EventLogging. The
first creates the logfiles and data structures and must contain info on their names, size and
type of content. The second assigns event types to logfile names so that info regarding a
specified event type will be written into a specific logfile.

The logfiles themselves are organized as ring buffers with a user defined size. If a logfile is
full the logging starts overwriting the oldest logfile entries (FIFO).

Two different types of logfiles are supported:

• XML-logfiles for xml-formatted logging (easy to read)

• Binary logfiles (less memory usage)

4.1 LogDefinition
The “LogDefinition” contains the “LogFiles” and the “Records” group inside LOG database.
Both groups are described in the following chapters.

Database path: /LOG/LogDefinition
<LogDefinition>
 <LogFiles>
 <Event size="10240"/>
 <JobReport size="10240"/>
 <Datalogging_0 size="20480" contenttype="binary"
 record="Datalogging_0"/>
 </LogFiles>

<Records>
 <Datalogging_0>
 <Variable_0 _="int" size="2"/>
 <Variable_1 _="Uint16"
 path="/Process/Bus1/Device_0/Variable_1"/>
 </Datalogging_0>

</Records>
</LogDefinition>

Note: Projects created by TILA2 still use an older log database format, where the LogFiles and
Records are stored within separated groups, but with same content:
 /LOG/LogFiles
 /LOG/Records
The Group "LogDefinition" does not exist.

4.1.1 LogFiles Group
LogfFiles
Syntax:

<LogFileName size="LogFileSize"contenttype="Type"
record="RecordPath"/>

Description:

TiXML Reference Manual

 94

Defines logfiles by their name and size.

Elements:
LogFileName

The identifier of the logfile. Random unique names may be chosen. A maximum of 12
logfiles can be created.

LogFileSize
Specifies the logfile size in bytes. A logfile size bigger than the Tixi Device memory will
be rejected with an error message. Because of the file system structure the logfile size
will be round up to 512byte sectors.

Type
The content type for logfiles has to be set to “xml" for XML formatted data logging and
to “binary" for binary data logging.

RecordPath
The record path refers to a record inside “Records" database which defines the data
structure of a binary log entry.

Example:
Create XML-logfile Log1 with 1KB size and binary logfile Log2 with 20KB size and 80 bytes
maximum for an entry:
 <LogFiles>
 <Log1 size="1024"/>
 <Log2 size="20480" contenttype="binary" record="Struct"/>
 </LogFiles>

During upload of logfile definitions the number of currently existing logfiles plus the number of
the uploaded logfiles must not exceed twelve, because new logfiles are written before
existing logfiles will be deleted. In this case it will be necessary to do a factory reset before
uploading the new logfile definition.

4.1.1.1 SupportLog
After a factory reset the Tixi Device is preconfigured with a Logfile “SupportLog” which may
also be added to TiXML projects.
This logfile is used to collect information about the incorporated PSTN or GSM modem like
country setting, SMSC, own numbers etc. during system startup.

4.1.2 Records Group
Records
Syntax:

<RecordName>
 <ValueName _="Type"/>
 <ValueName _="Type" size="Length"/>
 <ValueName _="Type" size="Length" value="Value"/>
 <ValueName _="Type" size="Length" format="FormatString"/>
 <ValueName _="Type" path="Source"/>
 <ValueName _="Type" path="Source" exp="Exponent"/>
 <ValueName _="Type" path="Source" multip="Factor+Offset"/>
 <ValueName _="Type" path="Source" Name="Alias"/>
</RecordName>

Description:
Defines the structure of a binary logfile.

Elements:

TiXML Reference Manual

 95

RecordName
 Name of the data structure the logfile refers to.
ValueName
 Name of the value being assigned during logging.
Type
 Type of value:
 int: integer
 string: text string
 byte: byte value
 word: word (16bit) value
 dword: dword (32bit) value
 float: float (32bit) value
 double: double (64bit) value
 meterbus: Meterbus RAW data (only usable with “path”, not “value” !)

 Additional simpleTypes, see 6.5.1
 Bit: bit
 Int8: byte (8bit) signed
 Uint8: byte (8bit) unsigned
 Int16: word (16bit) signed
 Uint16: word (16bit) unsigned
 Int32: dword (32bit) signed
 Uint32: dword (32bit) unsigned

Length
 Number of bytes registered for each log entry (max 100). Must be defined for type

“string”, optional for all other types.
 int: max. 4 bytes, default 4 bytes
 string: max. 100 chars, no default
 byte: default unsigned (1 byte)
 word: default unsigned (2 byte)
 dword: default unsigned (4 byte)
 float: default 4 byte
 double: default 8 byte
 meterbus: size will be calculated during logging
 Bit: bit (1/8 byte)
 Int8: default signed (1 byte)
 Uint8: unsigned (1 byte)
 Int16: signed (2 byte)
 Uint16: unsigned (2 byte)
 Int32: signed (4 byte)
 Uint32: unsigned (4 byte)

Value
 Value for the log entry, if not specified in the log command (option). May be given via

reference.

Exponent
Exponent of base 10 to specify fix point precision of
simpleType = Uint8, Uint16, Uint32, Int8, Int16, Int32 (see 6.5.1).
The logged variable value will be multiplied by 10 Exp to get the output value.
Output value = 10 Exp * logged variable value.

TiXML Reference Manual

 96

The exponent therefore specifies the position of comma within a fix point value

Following values are possible:

Exp value Description
-6 Precision = 0,000001
-5 Precision = 0,00001
-4 Precision = 0,0001
-3 Precision = 0,001
-2 Precision = 0,01
-1 Precision = 0,1
0 Precision = 1 (default
1 Precision = 10
2 Precision = 100
3 Precision = 1000
4 Precision = 10000
5 Precision = 100000
6 Precision = 1000000

Factor+Offset
 The logged value will be multiplied by this factor and the offset will be added to get the
 output value.
 Only simpleType = Uint8, Uint16, Uint32, Int8, Int16, Int32 (see 6.5.1).

 Output value = Factor * Logged value + Offset

 The factor is used as a fraction, e.g.: "1/1000“ or "3600/1“, the denominator and
 numerator must not be zero. The offset may be negative or positive.

Source
 Source for the log entry value, if not specified in the log command (option). Processed

faster than “value” but supports external (PLC) variables only.
FormatString
 String that defines the logfile value output format.
 For a list of available format option see chapter 6.5.2.
Alias
 Replaces the ValueName in the header of "none XML" logfile output by the given alias

name. If the ReadLog / IncludeLog(TXT) flag "UseAlias" is used, an attribute "Name"
with the variable alias will be added on XML output too.

Example:
 This example creates a data structure with 7 values:
<Records>
 <Datalogging_0>
 <Value1 _="Int16" Name="word variable"/>
 <Value2 _="Int8" value="®/Process/C40/IB/P0;"
 Name="byte variable"/>
 <Value3 _="Bit" value="®/Process/C40/I/P8;"
 format="?On,Off;" Name="bit variable"/>
 <Value4 _="word" path="/Process/MB/A/AI/P0" multip="1/10+3"
 Name="word variable 2"/>
 </Datalogging_0>
</Records>

Value1 may be a Int16 signed 16bit word value (2 byte) with a value range of -32768 to

TiXML Reference Manual

 97

32767. The value must be given by the event.
Value2 is an Int8 signed byte value (1 byte) with a value range of -128 to 127. The input
ports P0-P7 (via reference) are automatically written as this byte with every log process.
Value3 is a bit value. The input port P8 is automatically written as this bit. Instead of the
0/1 value the string “On" or “Off" will be omitted during reading the logfile.
Value4 is the analog input value devided by 10 with an offset of +3.
The head line of the logfile output will show the variable alias names.

4.2 EventLogging
Database path: /LOG/EventLogging

EventLogging Database
Syntax:

<EventSource mode="Mode1Mode2" file="LogFileName"/>
Description:

Defines what system information to write into which logfile.
Elements:
EventSource

The identifier for the kind of event to log into the given logfile. Possible EventSource
Values are as follows:
Event reports all event handlers that become processed
Login reports all cases of anyone doing a login into the Tixi

Device as well as for logout
IncomingMessage reports on all incoming messages
FailedIncomingCall reports on all incoming calls that could not be handled

properly
JobReport reports the result of sending a message, regardless if it

was ok or error.
Mode1
 Specifies which incidents to report into the logfile. Possible values:

a report all incidents (errors and ok)
e report errors only
o report ok notifications only

Mode2
 Specifies the verbosity of the logfile entry. Possible values are as follows:

v verbose messages telling the possible reason
[empty] giving a short description only (default)

LogFileName
 The name identifier of the logfile. Chosse one of the Logfiles of the LogDefinition (see

chapter 4.1.1).

TiXML Reference Manual

 98

Example:
Verbosely report of failed message sending to Log1 and - shorter - all events triggered
to Log2: <EventLogging>
 <JobReport mode="ev" file="JobReport"/>
 <Event mode="a" file="Event"/>
 </EventLogging>

4.3 Logging commands
Log Command
Syntax:

<Log _="LogfileName">
 LogData
</Log>

Description:
Creates an entry with following structure:

<ID_nnn time=_"TimeStamp">

LogData
</ID_nnn>

nnn:
 Unique ID to address the log entry.

TimeStamp:
 System time when the log entry was written.

Note: The Log command can only be used for logfiles defined with the content type XML.

Elements:
LogfileName:

Name of the logfile where the data is written to. Must be defined in the LogDefinition
database.

LogData:

Data to be logged. May be collected via references.

Example:
Event handler that logs the last power off and the last power on time.

<PowerOn >
<Log _="SupportLog">

<PowerOff _="®/TIMES/PowerOffTime;"/>
<PowerOn _="®/TIMES/PowerOnTime;"/>

</Log>
</PowerOn>

Result:
<ID_1 _="2003/08/13,10:31:55">
 <PowerOff _="2003/08/13,09:10:00" />
 <PowerOn _="2003/08/13,09:16:52" />
</ID_1>

TiXML Reference Manual

 99

BinLog Command
Syntax:

<BinLog _="LogfileName">
 <ValueName _="Value"/>
 <ValueName _="Value"/>
 ...
</BinLog>

Description:
Creates a binary logfile entry with the structure of the given record.

Note: The BinLog command can only be used for logfiles defined with the content type
 “binary" and an assigned record.

Elements:
LogfileName:

Name of the logfile where the data is written to. Must be defined in the LogDefinition
database.

ValueName:
 Name of value defined in record database. Only necessary if no value or path is defined
 within the record.

Value:
 Value to be written into the structure. Only necessary if no value or path is defined within
the record.

Example:
Value1 is given as “Parameter" during DoOn. Value2 and Value3 are port values given by
the record value definition.

<LogValues>
<BinLog _="Datalogging_1">

<Value1 _="®~/Parameter"/>
</BinLog>

</LogValues>

The logfile entry with Parameter=12345 may look like this:

 <ID_1 _="2003/08/21,09:58:59">
 <Value1 _="12345"/>
 <Value2 _="32"/>
 <Value3 _="On"/>
 </ID_1>

TiXML Reference Manual

 100

4.4 Logfile memory calculation
This information may be used to calculate the necessary logfile memory depending on the
loginterval and amount of data.

Type size amount
Logfile Header 56 Byte per file
Entry Header 12 Byte per entry
Entry Data XML Size of XML text (variable) per entry
 Binary Sum of data elements (static) per entry

Example:
Log periode: 1 week
Log cycle: 10 minutes
Record:

 <Datalogging_0>
 <Value1 _="int" size="2"/>
 <Value2 _="int" size="2"/>
 <Value3 _="int" size="2"/>
 <Value4 _="int" size="2"/>
 <Value5 _="int" size="2"/>
 <Value6 _="int" size="2"/>
 <Value7 _="int" size="2"/>
 <Value8 _="int" size="4"/>
 <Value9 _="int" size="1"/>
 <Value10 _="int" size="1"/>
 </Datalogging_=>

Calculation:
(20 Byte Data + 12Bytes Header) * 144 entries/day * 7 days + 56 Bytes File Header
= 32312 Bytes
Logfile size should be 32768 (divideable by sector size 512)

Estimated memory usage with 2MB memory (only 1 MB available during sending!):
Value to
log

Log-
Sessions

With 1 minute interval
overwrite after

With 15 minute interval
overwrite after

With 1 hour
interval overwrite
after

1 Byte 77000 53 days 26 month 9 years
1 DWord 62500 43 days 21 month 7 years
10 Byte 45500 31 days 15 month 5 years
10 DWord 19200 10 days 5 month 2 years

4.5 Reading and clearing logfiles
For information on how to read or clear the content of logfiles read chapter 2.4.6.6.

4.6 Sending and formatting log reports
The Tixi Device is able to include logged data into messages. You can choose two different
commands to include logdata into messages:

1. IncludeLog. The logged data will be included in XML format.

2. IncludeLogTXT: Most applications can’t handle XML so we’ve implemented a feature

to format the output of the logged data. You can choose the predefined logfile formats
“CSV, “HTML” and “XML” or reformat the data at your own wish.

TiXML Reference Manual

 101

IncludeLog – include entries from the log files into message text

Syntax:
<IncludeLog _="LogFileName" range="entryrange"/>

Description:
Template processor instruction which includes logfile entries in the text of a message.
The name of the logfile can be specified as well as a range of entries to be inserted.
The generated output is similar to the output generated by the ReadLog command. See
chapter 2.4.6.6 for details.

Parameter:
LogFileName:

Name of the logfile to be read.
entryrange:
 Range of log data to send. See chapter 2.4.6.6 for details.

Message Example:
Send the entries with the IDs 7 – 8.

<UserTemplates>
<LogfileMsg>

 <IncludeLog _="Datalogging_0" range="ID_7-ID_8"/>]
</LogfileMsg>

 </UserTemplates>

Message Body result:
 <ID_7 _="2002/10/10,16:10:51">
 <Data _="Logged Data"/>
 </ID_7>

 <ID_8 _="2002/10/10,16:10:51">
 <Data _="Logged Data"/>
 </ID_8>

IncludeLogTXT – include and reformat entries from the log files into message text

Syntax:
<IncludeLogTXT _="LogFileName" range="entryrange"
type=”templates” flags="header" fillInterval="interval"
maxInterval="tolerance" fillText="string" Viewset="variables"
Formats/>

Description:
Template processor instruction which includes logfile entries in the text of a message or
into an attachment. The name of the logfile can be specified as well as a range of entries
to be inserted.
The generated output depends on the specified format parameters.

Parameter:
LogFileName:

Name of the logfile to be read.
entryrange:
 Range of log data to send. See chapter 2.4.6.6 for details.

TiXML Reference Manual

 102

templates:
 Predefined logfile formats:

 CSV: “character separated values”, e.g. for easy Excel import.
 HTML: Logdata will be formatted as HTML table
 XML: Logfile will be send as XML file

header
 flags="NoId,NoDate,NoTime,NoNames,NoSec,UseAlias,CRC16,CRC32"

 NoId: removes the ID of each entry (only for none XML structures)
 NoDate: removes the Date of each entry (only for none XML structures)

 NoTime: removes the Time of each entry (only for none XML structures)
 NoNames: removes the first row with variable names (only for none XML
 structures)
 NoSec: removes the seconds within the time stamp
 UseAlias: adds the variable alias names to the XML logfile output
 CRC16: calculates a CRC16 checksum (decimal) over the logfile output
 (excluding headers) and writes it under the data (only for CSV).

 CRC16 calculation:
 Width: 16Bit
 Polynomal: 0x1021
 Init Value: 0x0000
 Reflection: In/Out deactivated
 XOR Out: 0x0000

 CRC32: calculates a CRC32 checksum (decimal) over the logfile output
 (excluding headers) and writes it under the data (only for CSV).

 CRC32 calculation:
 Width: 32Bit
 Polynomal: 0x04C11DB7
 Init Value: 0xFFFFFFFF
 Reflection: In/Out deactivated
 XOR Out: 0x00000000

interval:
 Expected log interval. If the time between two log entries exceeds the
 tolerance interval, an entry with the content of string will be added with the
 timestamp of the last entry + interval.
 Can be used to create a fixed log content length if the Tixi Device was
 switched off or the logging was stopped for a while.

tolerance:
 Maximum time between two log entries before string will be added.

string: String added to the log output if tolerance interval was exceeded (only for CSV
 format).

variables:
 List of variables (separated by comma) to be selected for logfile output. The variable
 names must match the tag names of the record entries.

Formats:
 tabstart string which will be added at the beginning of the file

 maximum length: 30 chars
 default: (empty)

TiXML Reference Manual

 103

 tabend string which will be added to the end of the file
 maximum length: 30 chars
 default: (empty)

 tagstart string which will be added in front of each value.
 maximum length: 30 chars
 default: “

 tagend string which will be added to the end of each value.
 maximum length: 30 chars
 default: “

 colsep string which will be added between the values (between tagend and
 tagstart).

 maximum length: 30 chars
 default: ;

 rowstart string which will be added in front of the first value (in front of tagstart).
 maximum length: 30 chars
 default: (empty)

 rowend string which will be added to the end of the last value (after tagend).
 maximum length: 30 chars
 default: (CRLF)

 rowsep string which will be added between two rows (in front of rowstart).
 maximum length: 30 chars
 default: (empty)

 cols defines the number of columns after which a line break (rowend/rowstart)
 will be made. Usefull to distribute devices to several lines of a CSV file.
 auto: number of columns equal number of record entries (default)
 0…32768 number of columns

crcText string added in front of the CRC

Attention: If you enter a rowend character, the default CRLF will be replaced. To get
each log entry in a seperate line, you’ll have to add the CRLF (
)
manually to the end of the rowend character, e.g. if you like to get an exclamation mark
as rowend, enter this:

 rowend="!
"

TiXML Reference Manual

 104

Message Examples:

Logged Data:
 <ID_7 _="2002/10/10,16:10:00">
 <Data1 _="Logged Data1"/>
 <Data2 _="Logged Data2"/>
 <Data3 _="Logged Data3"/>
 </ID_7>

 <ID_8 _="2002/10/10,16:20:03">
 <Data1 _="Logged Data1"/>
 <Data2 _="Logged Data2"/>
 <Data3 _="Logged Data3"/>
 </ID_8>

Example 1:
Send the entries with the IDs 7 – 8, remove ID and use CSV format:

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_=" range="ID_7-ID_8"
 flags="NoId" type="CSV"/>

</Message_0>
 </UserTemplates>

Message Body result:
Date;Time;Data1;Data2;Data3
2002/10/10;16:10:00;Logged Data1;Logged Data2;Logged Data3
2002/10/10;16:20:03;Logged Data1;Logged Data2;Logged Data3

Example 2:
Send the entries with the IDs 7 – 8, remove ID, remove date and time stamp seconds and
use CSV format with comma as character separator (for english Excel) :

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_0" range="ID_7-ID_8"
 flags="NoId,NoDate,NoSec" type="CSV" colsep=","/>

</Message_0>
 </UserTemplates>

Message Body result:
Date,Time,Data1,Data2,Data3
16:10,Logged Data1,Logged Data2,Logged Data3
16:20,Logged Data1,Logged Data2,Logged Data3

Example 3:
Send the entries with the IDs 7 – 8, remove ID, Date, Time, Names, use HTML format:

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_0" range="ID_7-ID_8"
 flags="NoId,NoDate,NoTime,NoNames" type="HTML"/>

</Message_0>
 </UserTemplates>

TiXML Reference Manual

 105

Message Body result (Web browser view):

Logged Data1 Logged Data2 Logged Data3

Logged Data1 Logged Data2 Logged Data3

HTML-code:
 <table border=1>
 <tr>
 <td>Logged Data1</td>
 <td>Logged Data2</td>
 <td>Logged Data3</td>
 </tr>
 <tr>
 <td>Logged Data1</td>
 <td>Logged Data2</td>
 <td>Logged Data3</td>
 </tr>
 </table>

Example 4:
Send the entry with the ID 8, remove ID, Date, Time, Names and use user defined format:

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_0" range="ID_8"
 flags="NoId,NoDate,NoTime,NoNames" tagstart="#"
tagend="#" colsep="+" rowstart="-" rowend="-
&#xod; "/>

</Message_0>
 </UserTemplates>

Message Body result:
-#Logged Data1#+#Logged Data2#+#Logged Data3#-

Example 5:
Send all entries, remove ID and date and create dummy entries if there are entries missing
according to the log interval of 5 minutes:

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_0" range="all"
 flags="NoId,NoDate" type="CSV" fillInterval="5m"
 maxInterval="305s" fillText="-;-;-" />

</Message_0>
 </UserTemplates>

Message Body result:
Date;Time;Data1;Data2;Data3
16:10:00;Logged Data1;Logged Data2;Logged Data3
16:15:00;-;-;-
16:20:03;Logged Data1;Logged Data2;Logged Data3

TiXML Reference Manual

 106

Example 6:
Send all entries in XML format and add variable alias names:

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_0" range="all"
 flags="UseAlias" type="XML"/>

</Message_0>
 </UserTemplates>

Message Body result:
 <ID_7 _="2002/10/10,16:10:00">
 <Data1 _="Logged Data1" Name="Alias name for Data1"/>
 <Data2 _="Logged Data2" Name="Alias name for Data2"/>
 <Data3 _="Logged Data3" Name="Alias name for Data3"/>
 </ID_7>

 <ID_8 _="2002/10/10,16:20:03">
 <Data1 _="Logged Data1" Name="Alias name for Data1"/>
 <Data2 _="Logged Data2" Name="Alias name for Data2"/>
 <Data3 _="Logged Data3" Name="Alias name for Data3"/>
 </ID_8>

Example 7:
Send all entries of variables "Data1" and Data3", remove ID and date and calculate a
CRC32:

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_0" range="all"
 flags="NoId,NoDate,CRC32" crcText="CRC32=" type="CSV"
Viewset="Data1,Data3"/>

</Message_0>
 </UserTemplates>

Message Body result:
Date;Time;Data1;Data3
16:10:00;Logged Data1;Logged Data3
16:20:03;Logged Data1;Logged Data3
CRC32=2481894213

Example 8:
Send the entries with the IDs 7 – 8, remove ID and names and use CSV format with one
column:

<UserTemplates>
<Message_0>

 <IncludeLogTXT _="Datalogging_=" range="ID_7-ID_8"
 flags="NoId,NoNames" type="CSV" cols="1"/>

</Message_0>
 </UserTemplates>

Message Body result:
2002/10/10;16:10:00;Logged Data1
2002/10/10;16:10:00;Logged Data2
2002/10/10;16:10:00;Logged Data3
2002/10/10;16:20:03;Logged Data1
2002/10/10;16:20:03;Logged Data2
2002/10/10;16:20:03;Logged Data3

TiXML Reference Manual

 107

4.6.1 Predefined format tags
 CSV XML HTML
tabstart <TABLE>\r\n <table border=1>\r\n

tabend </TABLE>\r\n </table>\r\n

tagstart <T v=" <td>

tagend "/>\r\n </td>\r\n

rowstart <TAG>\r\n <tr>\r\n

rowend \r\n </TAG>\r\n </tr>\r\n

colsep ;
(\r = Carriage Return , \n = Line Feed

4.6.2 Sending logfiles as attachment
You can use the IncludeLogTXT message text template within a special UserTemplates
group called "Attachments". This will create an email file attachment of the logged data. The
email attachment will be base64 coded.

The Attachments attribute must be added to the MessageJobTemplate:

Database path: /TEMPLATE/MessageJobTemplates

<MessageJobTemplates>
 <LogfileMail _="SMTP">
 <Recipient _="/D/AddressBook/TaskForce1"/>
 <Sender _="/D/AddressBook/MySelf"/>
 <Body _="/UserTemplate/LogfileMsg"/>
 <Subject _="Logfile"/>
 <Attachments _="/D/UserTemplates/Attachments/Datalogging_0"/>
</MessageJobTemplates>

This Attachment format has to be configured in a special attachments group inside the
UserTemplates database:

Database path: /TEMPLATE/UserTemplates

<Attachments>
 <Attachment_Set>
 <Attachment filename="file">
 <Content/>
 <Content/>
 </Attachment>
 <Attachment filename="file">
 <Content/>
 <Content/>
 </Attachment>
…
 </Attachment_Set>
</Attachments>

Example:
<Attachments>
 <Datalogging_0>
 <Attachment filename="Datalogging_0.csv">

 <IncludeLogTXT _="Datalogging_0" range="previous 1 days"
 flags="NoId" type="CSV"/>

 </Attachment>
 <Datalogging_0>
</Attachments>

TiXML Reference Manual

 108

Some email programs, e.g. newer versions of “Outlook" or “OutlookExpress" are deleting
CSV attachments automatically for security reasons. You can disable this function by
changing the security settings of these programs (see email program manual).

4.7 Logfile Counter
The Tixi Device automatically creates log counters within system properties path
/LogCounter/Logfilename (see chapter 12).

• Each logfile entry increases the counter value by 1.
• The current value can be changed (e.g. reset to 0) by “set” command (see chapter

2.4.6.5).
• The log counter will be reset to 0 if a logfile is added/removed to the log configuration
• The log counter will be reset to 0 if the logfile size is changed

TiXML Reference Manual

 109

5 Remote Control

5.1 Overview
Remote control must be separated in two different connection types.

• Remote control of the Tixi Device
• Remote control of a device attached to a Tixi Alarm Modem
•

The following chapters describe these two cases in detail. Read the chapter 'Remote Control
of the Tixi Device' first because the remote control of the attached device is based on this
chapter.

5.2 Remote Control of the Tixi Device
The following pictures show the communication ways when controlling Tixi Device by remote.

Remote control (remote configuration) via PSTN/GSM/ISDN:

Remote control (remote configuration) via LAN/Internet:

In these configurations the desktop PC controls the remote Tixi Device by means of the
TiXML protocol. To do this the following steps are required:

1. The Desktop PC needs to establish a connection to the remote device. This may
be a dialup connection via modem (ISDN/PSTN/GSM) using the phone number of
the Tixi Alarm Modem or a TCP/IP connection via LAN/WLAN, GPRS or internet
using the IP address of the Tixi Device.

2. Login to the remote Tixi Device. (see chapter 0)
3. Control the remote Tixi Device by means of TiXML. (see chapter 2.4.6ff)
4. The remote connection is terminated by the Logout command. (see chapter 0)

TiXML Reference Manual

 110

5.3 Remote Control of an attached device
The following picture shows the communication ways where the device attached to the
remote Alarm Modem is controlled by the desktop PC.

In this case the programming tool of the attached device (PLC, meter, etc.) is used. The
connection is established in two main steps.

1. Establish a remote control connection to the Tixi Alarm Modem as described in
the previous chapter.
2. Send the TransMode command to switch the remote Tixi Alarm Modem to the
Transparent Mode (see chapter 2.4.6.1).

The attached device can now be controlled by the desktop PC by accessing the COM port of
the dialing modem.
Such a connection can only be closed by a modem disconnection. To do this, the desktop
PC sends the modem escape sequence ("+++") or the line is interrupted, e.g. by switching of
the dialing modem.

TiXML Reference Manual

 111

6 Process I/O Ports and Variables

6.1 Introduction
The Tixi Device can use its on board or extension I/Os as well as variables of a connected
PLC to signal states of connected systems.

To handle the changes of I/Os and PLC variables the 'Process' subsystem is part of the Tixi
Device firmware. The following picture shows how it triggeres the event processing.

The process detects the changes of variables, e.g. the analog input which is mapped to the
process variable path /Process/MB/A/AI/P0.
This leads to a processing of the Event States which may referr to the ProcessVariable
database with RPN (reverse polish notation) instructions to check event conditions, e.g. to
compare the actual temperature with a threshold.
The Event States then triggers an Event Handler to process event commands, e.g. sending a
message.

TiXML Reference Manual

 112

Event States Group

Event State

Associated Process Variable

EventHandler

Sending a message starts the Job Generator which creates the jobs in the same way as if
the events were received as DoOn commands from a client device (e.g. PC).

The EventStates remember whether an event was already activated or not. Therefore, only
the change of the process variable from FALSE to TRUE starts the event. To fire the same
event at a later time, the process variable must change from TRUE to FALSE before and
then from FALSE to TRUE again.

The following sections describe the configuration of the processing in detail.

6.2 Event States
EventStates are used to trigger EventHandler depending on the flank change of an
associated variable. The variable may be bit variable (e.G. I/O) or the bit result of a process
variable. Variable values greater than 1 will be interpreted as 1 (TRUE).

The maximum amount of EventStates is 100.

There are two different ways to assign an event to a process variable:

• With use of the ProcessVars database (chapter 6.2), which is slower but more flexible
and allows logical operations and comparisons.

• Without use of ProcessVars database, which is much faster but doesn't support
logical operations and comparisons.

Database path: /PROCCFG/EventStates

<EventStates>
<Alarm_0>

<Enabled _="TRUE"/>
<ProcessVar _="/Process/PV/Alarm_0_ProcVar" flank="high"/>
<Event _="Alarm_0">

<Barn _="12"/>
<Temperature _="10"/>

</Event>
</Alarm_0>

</EventStates>

Event State Configuration
Syntax::

<EventStateName>
<Enabled _="EnableState"/>
<ProcessVar _="ProcessPath" flank="State"/>
<Event _="EventName">

ParameterList
</Event>

</EventStateName>

Description:
Attribute group which defines an event state.

Elements:
EventStateName:

Name of the event state which must be unique inside this group.

EnableState:

Only checked after SetConfig or system start, no dynamic change possible.

TiXML Reference Manual

 113

TRUE The event state is enabled, event will be triggered.
FALSE The event state is disabled, event will not be triggered.
FAST The Event is processed immediately after checking it’s EventState
 (with TRUE a list of changed EventStates will be created first).
1 same as TRUE
0 same as FALSE

ProcessPath:

Path to a variable defined in the "/Process/" tree of the system properties (chapter 12).

State:
high Event is triggered if associated variable changes from 0 to 1
low Event is triggered if associated variable changes from 1 to 0
both Event is triggered on every logical change (0 to1 or 1 to 0) of associated

 variable.

EventName:
Name of the event triggered if condition (process variable flank) is fulfilled.
Note: There must be an Event Handler of the same name defined.

ParameterList:

List of XML encoded parameters. A parameter is written in a single XML- tag with:
<ParameterKey _="Value"/>

where
ParameterKey name of the Parameter (unique in the parameter list)
Value value of the Parameter.

 These parameters are passed to the Event and can be referred using
 ®~/ParameterKey (see chapter 3.1.1).

Example:
Event state configuration that triggers the EventHandler "Alarm_0" if the process variable
Alarm_0_ProcVar changes from 0 to 1. Two parameters are passed to the event and can be
used within its context e.g. for message text variables.

<Alarm_0>
<Enabled _="TRUE"/>
<ProcessVar _="/Process/PV/Alarm_0_ProcVar"/>
<Event _="Alarm_0">

<Barn _="12"/>
<Temperature _="10"/>

</Event>
</Alarm_0>

6.3 Process Variables
Typically a system like a Tixi Device checks the state of a system. This system is called the
'process'. The process is described by 'Process Variables' representing the state of the
process. Each Process Variable should get a meaningful name which must be unique inside
the configuration.

The value of the process variable can be a manually set value as well as calculated from the
values of the I/O ports or PLC variables on access or on trigger. For example, a signal input
can be linked with another input that indicates that the process power is on, so the input
signal is only valid if both conditions are met.

TiXML Reference Manual

 114

Process Variable name
Value calculated on access

The general characteristics are defined in the 'PROCCFG' database. The database contains
some attribute groups inside the group ProcessVars. Each group has the name of the
process variable it defines.

You may create an independent variable which may be used as a marker (memory) for
integer values or strings (up to 20 characters). Use of 50 independent variables is possible. A
default value and output format is optional.

If a value source can not be resolved, an alternative value may be given seperated by
comma, e.g.:

<LD _="/Process/Bus1/Device_0/Variable_0,10"/>

The following example shows three different types of process variables:

Database path: /PROCCFG/ProcessVars

<ProcessVars>
<Alarm_0_PV>

<Value>
<LDN _="/Process/MB/IO/I/P0"/>

</Value>
</Alarm_0_PV>

<Counter>

<Process>
<LD _="/Process/PV/CounterValue"/>
<ADD _="1"/>
<ST _="/Process/PV/CounterValue"/>

</Process>
</Counter>

<CounterValue def="0"/>

</ProcessVars>

Process Variable Configuration
Syntax:

<ProcessVariableName exp="Exponent" format="FormatString"
def="Value">

<Type precision="Precision">
RPN Instruction List

</Type>
</ProcessVariableName>

Description:
 Attribute group which defines a process variable.
 The data type of calculated process variables is Int32 (see 6.5.1)
Elements:
ProcessVariableName:

Name of the process variable. Must be unique in this database and must not be an
instruction name.

Exponent:
Exponent of base 10 to specify fix point precision of
simpleType = Uint8, Uint16, Uint32, Int8, Int16, Int32 (see 6.5.1).
The stack value will be multiplied by 10 Exp to get the process variable value.

 value process variable = 10 Exp * stack value

Independent variable

Calculation triggered by
EventHandler “Process”

TiXML Reference Manual

 115

The exponent therefore specifies the position of comma within a fix point value.

 Following values are possible:

Exp value Description
-6 Precision = 0,000001
-5 Precision = 0,00001
-4 Precision = 0,0001
-3 Precision = 0,001
-2 Precision = 0,01
-1 Precision = 0,1
0 Precision = 1 (default
1 Precision = 10
2 Precision = 100
3 Precision = 1000
4 Precision = 10000
5 Precision = 100000
6 precision = 1000000

FormatString:
 String that defines the value output format.
 For a list of available format option see chapter 6.5.

Value:
 Default value of process variable. Only available for independent process variables (no
 type specified).
 The decimal places of the default value are defining the exponent.
 If no decimal places but a fixed point format are given, the exponent is defined by the
 decimal places of the fixed point format. Therefore we recommend to always specify an
 exponent if you use a fixed point format with decimal places.

Type:
 Defines the calculation method:
 Value Calculated during EventStates processing, “Get” command or “LD” in
 another Process Variable.
 Pay attention on the command order inside an
 instruction list!
 Process Calculated on EventHandler Process (see chapter 3.7.1)

Precision:
 Defines the precision of the RPN instructions (option).
 If no precision is specified, the stack result will have the same precision as the first
 loaded value (exp/precision of source).

 Following values are possible:

precision value Description
-6 Precision = 0,000001
-5 Precision = 0,00001
-4 Precision = 0,0001
-3 Precision = 0,001
-2 Precision = 0,01
-1 Precision = 0,1
0 Precision = 1 (default
1 Precision = 10

TiXML Reference Manual

 116

Instruction List

2 Precision = 100
3 Precision = 1000
4 Precision = 10000
5 Precision = 100000
6 precision = 1000000

RPN Instruction List

List of RPN instructions calculating the value of the process variable.

Example:
Process variable that negates the status of input P0:
 <Alarm_0_PV>

<Value>
<LDN _="/Process/MB/IO/I/P0"/>

</Value>
</Alarm_0_PV >

Process Variable loading a Tixi Device analog value to reformat the displayed value.
<Alarm_1_PV format="F2,1;V">

<Value>
<LDN _="/Process/MB/A/AI/P0"/>

</Value>
</Alarm_1_PV>

Process Variable loading a Tixi Device analog value with exponent.
<Alarm_2_PV exp="-2">

<Value>
<LDN _="/Process/MB/A/AI/P0"/>

</Value>
</Alarm_2_PV>

Independent process variable with default value.

<VariableInit def="250">

6.3.1 RPN Instruction List
The RPN Instruction List is a FORTH (http://www.forth.org/) program that calculates the
value of a Process Variable. Its notation is similar to the Instruction List language used by
PLCs. The calculation of the value therefore works like that in PLCs using a simple
calculation stack.

Database path: /PROCCFG/ProcessVars

<ProcessVars>
<Alarm_0_PV>

<Value>
<LD _="/Process/MB/IO/I/P0"/>
<LD _="/Process/MB/IO/I/P1"/>
<LD _="/Process/MB/IO/I/P2"/>
<OR/>
<AND/>

</Value>
</Alarm_0_PV>

</ProcessVars>

The instructions are adding, replacing or moving item of the stack.

http://www.forth.org/

TiXML Reference Manual

 117

The following example shows the stack operation:

LD A ; Load Bit A
LD B ; Load Bit B
LD C ; Load Bit C
OR ; C or B
AND ; (C or B) and A

This program reads the three bit variables A, B and C. Then the upper two stack items C and
B are combined by an OR operation. Then the residual upper two stack items (result of B+C
as well as A) are combined by an AND operation. The result is 1.

The stack has a maximum size of 10 items. If an error occurs (stackoverflow,
stackunderflow) the result value is 0.
If there are several values left on the stack after calculation, only the value on the top will be
used for processing or during "Get" command.

6.3.1.1 Logical instructions
A 0 0 1 1 1234 4321 0 INPUT
B 0 1 0 1 4321 0 1234

LD A 0 0 1 1 1234 4321 0
NOT A 1 1 0 0 0 0 1
LDN A 1 1 0 0 0 0 1
DLDN A -1 -1 -2 -2 -1235 -4322 -1
A AND B 0 0 0 1 1 0 0
A DAND B 0 0 0 1 192 0 0
A ANDN B 0 0 1 0 0 1 0
A DANDN B 0 0 1 0 1042 4321 0
A OR B 0 1 1 1 1 1 1
A DOR B 0 1 1 1 5363 4321 1234
A ORN B 1 0 1 1 1 1 0
A DORN B -1 -2 -1 -1 -4130 -1 -1235
A XOR B 0 1 1 0 0 1 1
A DXOR B 0 1 1 0 5171 4321 1234
A XORN B 1 0 0 1 1 0 0

OUTPUT

A DXORN B -1 -2 -2 -1 -5172 -4322 -1235

LD - Load value
Syntax:

<LD _="SystemProperty" exp="Exponent"/>
Description:
Loads the value defined by the system property path to the top of the processing stack.
If the value type is “float”, only the fixed part is loaded.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Exponent:
 See chapter 6.3. An exponent within LD instruction may be necessary for constants
 used for operations with variables which already have an exponent (e.g. PLC variables).

AND
1 C B A

OR
1 C B
1 A

LD C
1 C
0 B
1 A

LD B
0 B
1 A

LD A
1 A

TiXML Reference Manual

 118

Examples:
Load the bit value "1" of the first digital input of a Tixi Device.

<LD _="/Process/MB/IO/I/P0"/>
Stack result: 1

Load the word value 1234 of a PLC variable.

<LD _="/Process/Bus1/Device_0/Variable_0"/>
Stack result: 1234

Load several PLC variables with value Variable_0=10, Variable_1=0, Variable_2=3.

<LD v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"
 v3="/Process/Bus1/Device_0/Variable_2"/>

Stack items:

Stack result: 3

Load constant "13" to the top of the stack.

<LD _="13"/>

Load constant "0.013" to the top of the stack.

<LD _="13" exp="-3"/>

LDN/NOT - Load value and logically negate
Syntax:

<LDN _="SystemProperty"/>
or
<NOT _="SystemProperty"/>

Description:
Reads the value defined by the address and loads its logical negation at the top of the
processing stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the bit value "0" of the first Tixi Device digital input and loads its logically negation on
the top of the stack.

<LDN _="/Process/C40/MB/IO/I/P0"/>
Stack result: 1

Reads the word value "1234" of a PLC variable and loads its logically negation on the top of
the stack.

<LDN _="/Process/Bus1/Device_0/Variable_0"/>
Stack result: 0

DLDN/NEG - Load value and binary negate
Syntax:

<DLDN _="SystemProperty"/>

3
0

10

TiXML Reference Manual

 119

Or
<NEG _="SystemProperty"/>

Description:
Reads the value defined by the address and loads the result of a 32bit binary negation at the
top of the processing stack.

Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the word value "1234" of a PLC variable and loads the result of its 32bit binary
negation on the top of the stack.

<DLDN _="/Process/Bus1/Device_0/Variable_0"/>

"1234" as a 32bit binary value: 00000000000000000000010011010010
Result of binary negation: 11111111111111111111101100101101
Stack result: -1235

LDS - Load Special
Syntax:

<LDS _="PLCVariable" AddInfo="ErrorCode"/>
Description:
Loads the additional info of a PLC variable at the top of the processing stack.
The result is a 32bit value calculated by the ErrorClass and ErrorValue of the variable.
See PLC-TiXML-Manual for further information.
Elements:
PLCVariable:
 Path to a PLC variable on the /Process/BusX/ system property branch. Not all PLCs
 do support additional error codes.
ErrorCode:
 see PLC-TiXML- Manual
Examples:
Load the ErrorClass and ErrorNumber information of the PLC variable “Variable_0” of
“Device_0” on PLC-Bus “Bus1” on the top of the stack.

<LDS _="/Process/Bus1/Device_0/Variable_0" AddInfo="Error"/>

AND - Load value and logically AND with value
Syntax:

<AND v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD and AND. It reads the values defined by both addresses.
Thereafter a logical AND operation between these two items is done and the result of the
operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the bit value of the first two Tixi Device digital inputs and loads the result of the
logically AND operation on the top of the stack.

<AND v1="/Process/MB/IO/I/P0" v2="/Process/MB/IO/I/P0"/>
or

TiXML Reference Manual

 120

<LD _="/Process/MB/IO/I/P0"/>
<AND _="/Process/MB/IO/I/P1"/>

or
<LD _="/Process/MB/IO/I/P0"/>
<LD _="/Process/MB/IO/I/P1"/>
<AND/>

See table on the top of this chapter for logic operation results.

DAND - Load value and binary AND with value
Syntax:

<DAND v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD and DAND. It reads the values defined by both
addresses. Thereafter a binary AND operation between these two items is done and the
result of the operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the word values Variable_0=1234 and Variable_1=4321 of a PLC and loads the result
of the binary AND operation on the top of the stack.

<DAND v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DAND _="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<LD _="/Process/Bus1/Device_0/Variable_1"/>
<DAND/>

"1234" as a 32bit binary value: 00000000000000000000010011010010
"4321" as a 32bit binary value: 00000000000000000001000011100001
Result of binary AND: 00000000000000000000000011000000
Stack result: 192

ANDN - Load value and logically AND with negated value
Syntax:

<ANDN v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD, LDN and AND. It reads the first addressed value by LD
and the second is read inverted by LDN. Thereafter a logical AND operation between these
two items is done and the result of the operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the bit value of the first two Tixi Device digital inputs whereby the second becomes
inverted. The result of the logically AND operation is loaded on the top of the stack.

<ANDN v1="/Process/MB/IO/I/P0" v2="/Process/MB/IO/I/P0"/>
or

<LD _="/Process/MB/IO/I/P0"/>

TiXML Reference Manual

 121

<ANDN _="/Process/MB/IO/I/P1"/>
or

<LD _="/Process/MB/IO/I/P0"/>
<LDN _="/Process/MB/IO/I/P1"/>
<AND/>

See table on the top of this chapter for logic operation results.

DANDN - Load value and binary AND with negated value
Syntax:

<DANDN v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD, DLDN and DAND. It reads the first addressed value by
LD and the second is read binary inverted by DLDN. Thereafter a binary AND operation
between these two items is done and the result of the operation is written on the top of the
stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the word values Variable_0=1234 and Variable_1=4321 of a PLC and loads the result
of the binary AND operation on the top of the stack.

<DANDN v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DANDN _="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DLDN _="/Process/Bus1/Device_0/Variable_1"/>
<DAND/>

"1234" as a 32bit binary value: 00000000000000000000010011010010
32bit binary negated value of "4321": 11111111111111111110111100011110
Result of binary AND: 00000000000000000000010000010010
Stack result: 1042

OR - Load value and logically OR with value
Syntax:

<OR v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD and OR. It reads the values defined by both addresses.
Thereafter a logical OR operation between these two items is done and the result of the
operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the bit value of the first two Tixi Device digital inputs and loads the result of the
logically OR operation on the top of the stack.

<OR v1="/Process/MB/IO/I/P0" v2="/Process/MB/IO/I/P0"/>
or

<LD _="/Process/MB/IO/I/P0"/>
<OR _="/Process/MB/IO/I/P1"/>

TiXML Reference Manual

 122

or

<LD _="/Process/MB/IO/I/P0"/>
<LD _="/Process/MB/IO/I/P1"/>
<OR/>

See table on the top of this chapter for logic operation results.

DOR - Load value and binary OR with value
Syntax:

<DOR v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD and DOR. It reads the values defined by both addresses.
Thereafter a binary OR operation between these two items is done and the result of the
operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the word values Variable_0=1234 and Variable_1=4321 of a PLC and loads the result
of the binary OR operation on the top of the stack.

<DOR v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DOR _="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<LD _="/Process/Bus1/Device_0/Variable_1"/>
<DOR/>

"1234" as a 32bit binary value: 00000000000000000000010011010010
"4321" as a 32bit binary value: 00000000000000000001000011100001
Result of binary OR: 00000000000000000001010011110011

Stack result: 5363

ORN - Load value and logically OR with negated value
Syntax:

<ORN v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD, LDN and OR. It reads the first addressed value by LD
and the second is read inverted by LDN. Thereafter a logical OR operation between these
two items is done and the result of the operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the bit value of the first two Tixi Device digital inputs whereby the second becomes
inverted. The result of the logically OR operation is loaded on the top of the stack.

<ORN v1="/Process/MB/IO/I/P0" v2="/Process/MB/IO/I/P0"/>
or

<LD _="/Process/MB/IO/I/P0"/>
<ORN _="/Process/MB/IO/I/P1"/>

TiXML Reference Manual

 123

or

<LD _="/Process/MB/IO/I/P0"/>
<LDN _="/Process/MB/IO/I/P1"/>
<OR/>

See table on the top of this chapter for logic operation results.

DORN - Load value and binary OR with negated value
Syntax:

<DORN v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD, DLDN and DOR. It reads the first addressed value by LD
and the second is read binary inverted by DLDN. Thereafter a binary OR operation between
these two items is done and the result of the operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the word values Variable_0=1234 and Variable_1=4321 of a PLC and loads the result
of the binary OR operation on the top of the stack.

<DORN v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DORN _="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DLDN _="/Process/Bus1/Device_0/Variable_1"/>
<DOR/>

"1234" as a 32bit binary value: 00000000000000000000010011010010
32bit binary negated value of "4321": 11111111111111111110111100011110
Result of binary OR: 11111111111111111110111111011110
Stack result: -4130

XOR - Load value and logically XOR with value
Syntax:

<OR v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD and XOR. It reads the values defined by both addresses.
Thereafter a logical XOR operation between these two items is done and the result of the
operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the bit value of the first two Tixi Device digital inputs and loads the result of the
logically XOR operation on the top of the stack.

<XOR v1="/Process/MB/IO/I/P0" v2="/Process/MB/IO/I/P0"/>
or

<LD _="/Process/MB/IO/I/P0"/>
<XOR _="/Process/MB/IO/I/P1"/>

TiXML Reference Manual

 124

or

<LD _="/Process/MB/IO/I/P0"/>
<LD _="/Process/MB/IO/I/P1"/>
<XOR/>

See table on the top of this chapter for logic operation results.

DXOR - Load value and binary XOR with value
Syntax:

<DOR v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD and DXOR. It reads the values defined by both
addresses. Thereafter a binary XOR operation between these two items is done and the
result of the operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the word values Variable_0=1234 and Variable_1=4321 of a PLC and loads the result
of the binary XOR operation on the top of the stack.

<DXOR v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DXOR _="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<LD _="/Process/Bus1/Device_0/Variable_1"/>
<DXOR/>

"1234" as a 32bit binary value: 00000000000000000000010011010010
"4321" as a 32bit binary value: 00000000000000000001000011100001
Result of binary XOR: 00000000000000000001010011110011
Stack result: 5363

XORN - Load value and logically XOR with negated value
Syntax:

<XORN v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD, LDN and XOR. It reads the first addressed value by LD
and the second is read inverted by LDN. Thereafter a logical XOR operation between these
two items is done and the result of the operation is written on the top of the stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the bit value of the first two Tixi Device digital inputs whereby the second becomes
inverted. The result of the logically XOR operation is loaded on the top of the stack.

<XORN v1="/Process/MB/IO/I/P0" v2="/Process/MB/IO/I/P0"/>
or

<LD _="/Process/MB/IO/I/P0"/>
<XORN _="/Process/MB/IO/I/P1"/>

TiXML Reference Manual

 125

or

<LD _="/Process/MB/IO/I/P0"/>
<LDN _="/Process/MB/IO/I/P1"/>
<XOR/>

See table on the top of this chapter for logic operation results.

DXORN - Load value and binary XOR with negated value
Syntax:

<DANDN v1="SystemProperty" v2="SystemProperty"/>
Description:
Combination of the instructions LD, DLDN and DXOR. It reads the first addressed value by
LD and the second is read binary inverted by DLDN. Thereafter a binary XOR operation
between these two items is done and the result of the operation is written on the top of the
stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Reads the word values Variable_0=1234 and Variable_1=4321 of a PLC and loads the result
of the binary XOR operation on the top of the stack.

<DXORN v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DXORN _="/Process/Bus1/Device_0/Variable_1"/>

or
<LD _="/Process/Bus1/Device_0/Variable_0"/>
<DLDN _="/Process/Bus1/Device_0/Variable_1"/>
<DXOR/>

"1234" as a 32bit binary value: 00000000000000000000010011010010
32bit binary negated value of "4321": 11111111111111111110111100011110
Result of binary XOR: 11111111111111111110101111001100
Stack result: -5172

6.3.1.2 Stack operations
MPS – Multiply stack
Syntax:

<MPS/>

Description:
Multiplies a stack value to use it for two operations.

Elements:
 none

Examples:
Reads the bit value of the first Tixi Device digital input, multiply it and set two output ports.
 <LD _="/Process/MB/IO/I/P0"/>
 <MPS/>

MPS 1
2

1
1
2

TiXML Reference Manual

 126

 <ST _="/Process/MB/IO/Q/P0"/>
 <ST _="/Process/MB/IO/Q/P1"/>

MRD – Copy 2nd stack level to top of stack
Syntax:

<MRD/>

Description:
Replaces the value on the top of the stack with the value from the second stack level.

Elements:
 none

Examples:
Load value 2 and 5 on the stack, MRD the second stack level (value 2) over the first stack
leven (value 5). The result of the ADD operation is 4 (2+2) because value 5 was replaced by
value 2.
 <LD _="2"/>
 <LD _="5"/>
 <MRD/>
 <ADD/>

MPP – Remove value at the top of stack
Syntax:

<MPP/>

Description:
Removes the value on the top of the stack.

Elements:
 none
Examples:
Reads the bit values of the first two Tixi Device digital inputs. MPP removes the top stack
level value (which is input P1). Therefore the value of input P0 will be written to output P0.
 <LD _="/Process/MB/IO/I/P0"/>
 <LD _="/Process/MB/IO/I/P1"/>
 <MPP/>
 <ST _="/Process/MB/IO/Q/P0"/>

CPY – Copy value
Syntax:

<CPY _="SystemProperty"/>

Description:
Copies the value at the top of the processing stack to the given system property address.
The stack remains unchanged.

MPP 1
2
3

2
3
-

MRD 1
2
3

2
2
3

TiXML Reference Manual

 127

Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12).
Examples:
Copy the value of input P0 to output P0 and P1.
 <LD _="/Process/MB/IO/I/P0"/>
 <CPY _="/Process/MB/IO/Q/P0"/>
 <CPY _="/Process/MB/IO/Q/P1"/>

SWP – swap values
Syntax:

<SWP/>

Description:
It swaps the two values at the top of the processing stack.

Elements:
 none

Examples:
Reads the bit values of the first two Tixi Device digital inputs. SWP swaps the upper two
stack Items. Therefore the value of input P0 will be written to output P0.
 <LD _="/Process/MB/IO/I/P0"/>
 <LD _="/Process/MB/IO/I/P1"/>
 <SWP/>
 <ST _="/Process/MB/IO/Q/P0"/>

ST - Store
Syntax:

<ST _="SystemProperty"/>

Description:
Stores the value from the top of the processing stack to the given system property address.
The stored value becomes removed from the stack.

Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12).

Examples:
Store the value of input P0 to output P0.

 <LD _="/Process/MB/IO/I/P0"/>
 <ST _="/Process/MB/IO/Q/P0"/>

SWP 1
2
3

2
1
3

TiXML Reference Manual

 128

6.3.1.3 Comparison instructions
A 0 0 1 -1 1 INPUT
B 0 1 0 1 -1

A GT B 0 0 1 1 0
A GTI B 0 0 1 0 1
A LT B 0 1 0 0 1
A LTI B 0 1 0 1 0
A EQ B 1 0 0 0 0
A NE B 0 1 1 1 1
A GE B 1 0 1 1 0
A GEI B 1 0 1 0 1
A LE B 1 1 0 0 1
A LEI B 1 1 0 1 0
A MIN B 0 0 0 1 1
A MINI B 0 0 0 -1 -1
A MAX B 0 1 1 -1 -1

OUTPUT

A MAXI B 0 1 1 1 1

GT/GTI – greater than (unsigned values) / (signed values)
Syntax:

<GT v1="SystemProperty" v2="SystemProperty"/>
<GTI v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values. If v1 is greater than v2, a 1 will be written to the top of the processing
stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Compares the unsigned word value Variable_0=1234 of a PLC with a constant value and
loads the logical result (0/1) of the comparison on the top of the stack.

 <GT v1="/Process/Bus1/Device_0/Variable_0" v2="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <GT _="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="100"/>
 <GT/>
Result: 1 (TRUE)

Compares the signed word value Variable_0=-1234 of a PLC with a constant value and loads
the logical result (0/1) of the comparison on the top of the stack.

 <GTI v1="/Process/Bus1/Device_0/Variable_0" v2="-100"/>
Result: 0 (FALSE)

Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the logical result (0/1) of the comparison on the top of the stack.

<GT v1="/Process/Bus1/Device_0/Variable_0"
v2="/Process/Bus1/Device_0/Variable_1"/>
Result: 0 (FALSE)

TiXML Reference Manual

 129

LT/LTI – less than (unsigned values) / (signed values)
Syntax:

<LT v1="SystemProperty" v2="SystemProperty"/>
<LTI v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values. If v1 is less than v2, a 1 will be written to the top of the processing
stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Compares the unsigned word value Variable_0=1234 of a PLC with a constant value and
loads the logical result (0/1) of the comparison on the top of the stack.

 <LT v1="/Process/Bus1/Device_0/Variable_0" v2="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LT _="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="100"/>
 <LT/>
Result: 0 (FALSE)

Compares the signed word value Variable_0=-1234 of a PLC with a constant value and loads
the logical result (0/1) of the comparison on the top of the stack.

 <LTI v1="/Process/Bus1/Device_0/Variable_0" v2="-100"/>
Result: 1 (TRUE)

Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the logical result (0/1) of the comparison on the top of the stack.

<LT v1="/Process/Bus1/Device_0/Variable_0"
v2="/Process/Bus1/Device_0/Variable_1"/>
Result: 1 (TRUE)

EQ – equal
Syntax:

<EQ v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values. If v1 is equal v2, a 1 will be written to the top of the processing stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Compares the unsigned word value Variable_0=1234 of a PLC with a constant value and

TiXML Reference Manual

 130

loads the logical result (0/1) of the comparison on the top of the stack.

 <EQ v1="/Process/Bus1/Device_0/Variable_0" v2="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <EQ _="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="100"/>
 <EQ/>
Result: 0 (FALSE)

Compares the signed word value Variable_0=-1234 of a PLC with a constant value and loads
the logical result (0/1) of the comparison on the top of the stack.

 <EQ v1="/Process/Bus1/Device_0/Variable_0" v2="-1234"/>
Result: 1 (TRUE)

Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the logical result (0/1) of the comparison on the top of the stack.

<EQ v1="/Process/Bus1/Device_0/Variable_0"
v2="/Process/Bus1/Device_0/Variable_1"/>
Result: 0 (FALSE)

NE – not equal
Syntax:

<NE v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values. If v1 is not equal v2, a 1 will be written to the top of the processing
stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Compares the unsigned word value Variable_0=1234 of a PLC with a constant value and
loads the logical result (0/1) of the comparison on the top of the stack.

 <NE v1="/Process/Bus1/Device_0/Variable_0" v2="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <NE _="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="100"/>
 <NE/>
Result: 1 (TRUE)

Compares the signed word value Variable_0=-1234 of a PLC with a constant value and loads
the logical result (0/1) of the comparison on the top of the stack.

TiXML Reference Manual

 131

 <NE v1="/Process/Bus1/Device_0/Variable_0" v2="-1234"/>
Result: 0 (FALSE)

Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the logical result (0/1) of the comparison on the top of the stack.

<NE v1="/Process/Bus1/Device_0/Variable_0"
v2="/Process/Bus1/Device_0/Variable_1"/>
Result: 1 (TRUE)

GE/GEI – greater equal (unsigned values) / (signed values)
Syntax:

<GE v1="SystemProperty" v2="SystemProperty"/>
<GEI v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values. If v1 is greater than or equal v2, a 1 will be written to the top of the
processing stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Compares the unsigned word value Variable_0=1234 of a PLC with a constant value and
loads the logical result (0/1) of the comparison on the top of the stack.

 <GE v1="/Process/Bus1/Device_0/Variable_0" v2="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <GE _="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="100"/>
 <GE/>
Result: 1 (TRUE)

Compares the signed word value Variable_0=-1234 of a PLC with a constant value and loads
the logical result (0/1) of the comparison on the top of the stack.

 <GEI v1="/Process/Bus1/Device_0/Variable_0" v2="-1234"/>
Result: 1 (TRUE)

Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the logical result (0/1) of the comparison on the top of the stack.

<GE v1="/Process/Bus1/Device_0/Variable_0"
v2="/Process/Bus1/Device_0/Variable_1"/>
Result: 0 (FALSE)

LE/LEI – less equal (unsigned values) / (signed values)
Syntax:

<LE v1="SystemProperty" v2="SystemProperty"/>
<LEI v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values. If v1 is less than or equal v2, a 1 will be written to the top of the

TiXML Reference Manual

 132

processing stack.
Elements:
SystemProperty:

Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
(see chapter 12). May also be a constant.

Examples:
Compares the unsigned word value Variable_0=1234 of a PLC with a constant value and
loads the logical result (0/1) of the comparison on the top of the stack.

 <LE v1="/Process/Bus1/Device_0/Variable_0" v2="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LE _="100"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="100"/>
 <LE/>
Result: 0 (FALSE)

Compares the signed word value Variable_0=-1234 of a PLC with a constant value and loads
the logical result (0/1) of the comparison on the top of the stack.

 <LEI v1="/Process/Bus1/Device_0/Variable_0" v2="-1234"/>
Result: 1 (TRUE)

Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the logical result (0/1) of the comparison on the top of the stack.

<LE v1="/Process/Bus1/Device_0/Variable_0"
v2="/Process/Bus1/Device_0/Variable_1"/>
Result: 1 (TRUE)

MIN/MINI – minimum (unsigned values) / (signed values)
Syntax:

<MIN v1="SystemProperty" v2="SystemProperty"/>
<MINI v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values and removes the greater one from the stack.
Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.
Examples:
Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the lesser value on the top of the stack.

 <MIN v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <MIN _="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <MIN/>

TiXML Reference Manual

 133

Result: 1234

Compares the signed word values Variable_0=1234 and Variable_2=-4321 of a PLC and
loads the lesser value on the top of the stack.

 <MINI v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_2"/>
Result: -4321

MAX/MAXI – maximum (unsigned values) / (signed values)
Syntax:

<MAX v1="SystemProperty" v2="SystemProperty"/>
<MAXI v1="SystemProperty" v2="SystemProperty"/>

Description:
Compares both values and removes the lesser one from the stack.

Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.
Examples:
Compares the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the greater value on the top of the stack.

 <MAX v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <MAX _="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <MAX/>
Result: 4321

Compares the signed word values Variable_0=1234 and Variable_2=-4321 of a PLC and
loads the lesser value on the top of the stack.

 <MAXI v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_2"/>
Result: 1234

6.3.1.4 Math operations
If the input value is a signed value or the math operation may result in a signed value, a
signed value operation (ADDI/SUBI/MULI/DIVI) must be used.

A 1234 4321 1234 -1234 -4321 INPUT
B 4321 1234 -4321 4321 -1234

ADD A B 5555 5555
ADDI A B 5555 5555 -3087 3087 -5555
SUB A B 3087
SUBI A B -3087 3087 5555 -5555 -3087
MUL A B 5332114 5332114
MULI A B 5332114 5332114 -5332114 -5332114 5332114

OUTPUT

DIV A B 0 3

TiXML Reference Manual

 134

DIVI A B 0 3 0 0 3
ADD/ADDI – addition (unsigned values) / (signed values)
Syntax:

<ADD v1="SystemProperty" v2="SystemProperty"/>
<ADDI v1="SystemProperty" v2="SystemProperty"/>

Description:
Adds the second stack value to the first stack value and replaces them with the result to the
operation.
 Value = v1 + v2

Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.
 If the system property is a signed value or the operation may result in a signed
 value, ADDI must be used.
Examples:
Adds the unsigned word value Variable_1=4321 to Variable_0=1234 of a PLC and loads the
result on the top of the stack.

 <ADD v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <ADD _="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <ADD/>
Result: 5555

Adds the signed word value Variable_2=-1234 to Variable_1=4321 of a PLC and loads the
result on the top of the stack.

 <ADDI v1="/Process/Bus1/Device_0/Variable_1"
 v2="/Process/Bus1/Device_0/Variable_2"/>
Result: 3087

SUB/SUBI – subtraction (unsigned values) / (signed values)
Syntax:

<SUB v1="SystemProperty" v2="SystemProperty"/>
<SUBI v1="SystemProperty" v2="SystemProperty"/>

Description:
Subtracts the second stack value from the first stack value and replaces them with the result
to the operation.
 Value = v1 - v2

Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.
 If the system property is a signed value or the operation may result in a signed
 value, SUBI must be used.

TiXML Reference Manual

 135

Examples:
Subtracts the unsigned word value Variable_1=1234 from Variable_0=4321 of a PLC and
loads the result on the top of the stack.

 <SUB v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <SUB _="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <SUB/>
Result: 3087

Subtracts the signed word value Variable_3=-1234 from Variable_2=-4321 of a PLC and
loads the Result on the top of the stack.

 <SUBI v1="/Process/Bus1/Device_0/Variable_2"
 v2="/Process/Bus1/Device_0/Variable_3"/>
Result: -5555

MUL/MULI – multiplication (unsigned values) / (signed values)
Syntax:

<MUL v1="SystemProperty" v2="SystemProperty"/>
<MULI v1="SystemProperty" v2="SystemProperty"/>

Description:
Multiplicates v1 by v2 and writes the result to the top of the stack.
 Value = v1 * v2

Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.
 If the system property is a signed value or the operation may result in a signed
 value, MULI must be used.
Examples:
Multiplicates the unsigned word values Variable_0=1234 and Variable_1=4321 of a PLC and
loads the Result on the top of the stack.

 <MUL v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <MUL _="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <MUL/>
Result: 5332114

TiXML Reference Manual

 136

Multiplicates the signed word values Variable_0=1234 and Variable_2=-4321 of a PLC and
loads the Result on the top of the stack.

 <MULI v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_2"/>
Result: -5332114

DIV/DIVI – division (unsigned values) / (signed values)
Syntax:

<DIV v1="SystemProperty" v2="SystemProperty"/>
<DIVI v1="SystemProperty" v2="SystemProperty"/>

Description:
Devides v1 by v2 and writes the result to the top of the stack.
 Value = v1 / v2
If the result is a real number, the value will be displayed as a rounded value, if the orgin
values do not have a decimal part.
Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.
 If the system property is a signed value or the operation may result in a signed
 value, DIVI must be used.
Examples:
Devides the unsigned word value Variable_0=4321 by Variable_1=1234 of a PLC and loads
the Result on the top of the stack.

 <DIV v1="/Process/Bus1/Device_0/Variable_0"
 v2="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <DIV _="/Process/Bus1/Device_0/Variable_1"/>

or
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <DIV/>
Result: 3

Devides the signed word value Variable_2=-4321.0 by Variable_1=1234.0 of a PLC and
loads the Result on the top of the stack.

 <DIVI v1="/Process/Bus1/Device_0/Variable_2"
 v2="/Process/Bus1/Device_0/Variable_1"/>
Result: -3.5

6.3.1.5 Time instruction
TIME - Compare Time Span with current Time
Syntax:

<TIME _="YYYY/MM/DD,HH:MM:SS-YYYY/MM/DD,HH:MM:SS"/>
Description:
Compare the current system time with the given time span and loads a 1 on the top of the
stack if the current time lies within the given range.
The span may be defined by dates, times or both.

TiXML Reference Manual

 137

Elements:
YYYY:

year [1970…2038]
MM:

month [01…12]
DD:

day [01…31]
HH:

hour [00..23]
MM:

minute [00..59]
SS:

second [00..59]

Examples:
System time: 2008/12/19,11:48:30

Check the time span between 11:00 and 12:00.
 <TIME _="11:00:00-12:00:00"/>
Result: 1 (TRUE)

Check the time span between 10:00 and 12:00 at 2008/12/20 to 2008/12/21.
 <TIME _="2008/12/20,10:00:00-2008/12/21,12:00:00"/>
Result: 0 (FALSE)

Check the date between 2008/12/18 to 2008/12/21.
 <TIME _="2008/12/18-2008/12/21"/>
Result: 1 (TRUE)

6.3.1.6 Power-on/off delay instruction
D_ON / D_OFF – Power-on/off delay
Syntax:
 <D_ON time="X"/>

<D_OFF time="X"/>
Description:
Waits the defined time to accept a status as true.

Elements:
X: Time to wait

 For time parameters, see chapter 3.1.2
Examples:
If the service button is pressed for at least 10s, the result of the process variable becomes 1.
 <LD _="/Process/MB/PollButton"/>
 <D_ON time="10s"/>

If the service button is released, after 10s the result of the process variable becomes 1.
 <LD _="/Process/MB/PollButton"/>
 <D_OFF time="10s"/>

TiXML Reference Manual

 138

6.3.1.7 IF instructions
IFEQ – IF equal condition
Syntax:
 <IFEQ _="SystemProperty"/>
 Instructions
 <ELSE/>
 Instructions
 <ENDIF/>
Description:
Instructions will only be processed if the stack value is equal the condition value, otherwise
the instructions following the ELSE condition become processed.

Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.

Instructions:
 List of instructions

Examples:
If PLC Variable_0 is equal 33, Tixi Device digital input P0 will be set; otherwise input P1 will
be set.

 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <IFEQ _="33"/>
 <LD _="1"/>
 <ST _="/Process/MB/IO/Q/P0"/>
 <ELSE/>
 <LD _="1"/>
 <ST _="/Process/MB/IO/Q/P1"/>
 <ENDIF/>

IFNE – IF not equal condition
Syntax:
 <IFNE _="SystemProperty"/>
 Instructions
 <ELSE/>
 Instructions
 <ENDIF/>
Description:
Instructions will only be processed if the stack value is not equal the condition value,
otherwise the instructions following the ELSE condition become processed.

Elements:
SystemProperty:
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12). May also be a constant.

Instructions:
 List of instructions

TiXML Reference Manual

 139

Examples:
If PLC Variable_0 is not equal 33, Tixi Device digital input P0 will be set; otherwise input P1
will be set.

 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <IFNE _="33"/>
 <LD _="1"/>
 <ST _="/Process/MB/IO/Q/P0"/>
 <ELSE/>
 <LD _="1"/>
 <ST _="/Process/MB/IO/Q/P1"/>
 <ENDIF/>

6.3.1.8 Text parser instruction
MID – text parser
Syntax:
 <MID _="String" start="X" length="Y"/>
Description:
Loads part of a string from position start to length.

Note: The result must be a number.

Elements:

String:
 String to parse. If the string is a system property, the reference must be made using
 the reference string: ® (see chapter 3.1.1)

X: Start position

0 first character
 If X is larger then length of string, parser starts at end of string.

Y: text length

Examples:
Extract the “hour” out of the Tixi Device “Time” string:
 <MID _="®/TIMES/Time" start="0" length="2"/>
or
 <LD start="0"/>
 <LD length="2"/>
 <MID _="®/TIMES/Time"/>

TiXML Reference Manual

 140

6.3.1.9 Bit mask instruction
MSK – bit mask with logical result
Syntax:

<MSK v1="SystemProperty" v2="mask"/>

Description:

MSK is used to mask one or several bits of a given byte, word or dword variable. If at
least one masked bit is set, the result is 1, otherwise 0.

Elements:
SystemProperty
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12).

mask: (decimal value)

value of the mask.
 1 mask for bit 1
 2 mask for bit 2
 3 mask for bit 1 OR 2
 4 mask for bit 3
 5 mask for bit 1 OR 3
 etc…

Examples
Masks the unsigned word value Variable_1=1234 of a PLC by mask 7 and loads the logical
result on the top of the stack.

 <MSK v1="/Process/Bus1/Device_0/Variable_1" v2="7"/>

 1234 = 00000000000000000000010011010010
 7 = 00000000000000000000000000000111

Result = 1

DMSK – bit mask with binary result
Syntax:

<DMSK v1="SystemProperty" v2="mask"/>
Description:

DMSK is used to mask one or several bits of a given byte, word or dword variable.
The result of the operation is the sum of all bits set within the mask (same as DAND).

Elements:
SystemProperty
 Path to a system propertiy, e.g. I/O, PLC variable, database entry or system variable
 (see chapter 12).

mask: (decimal value)

value of the mask.
 1 mask for bit 1
 2 mask for bit 2
 3 mask for bit 1 OR 2
 4 mask for bit 3
 5 mask for bit 1 OR 3
 etc…

TiXML Reference Manual

 141

Examples
Masks the unsigned word value Variable_1=1234 of a PLC by mask 255 and loads the
binary result on the top of the stack.

 <MSK v1="/Process/Bus1/Device_0/Variable_1" v2="256"/>

 1234 = 00000000000000000000010011010010
 255 = 00000000000000000000000011111111

Result = 210

6.3.1.10 FIND_BIT_ADDRESS instruction
In most projects an alarm is triggered by a bit variable. Because of the Tixi Device limitation
of 100 EventStates (= alarm trigger), only 100 different alarms would be possible. On larger
PLC systems much more alarms are required. These systems are very often offering the
alarm bits within word or dword variables.

With the MSK instruction (chapter 6.3.1.9) it is possible to trigger an alarm if any of the bits
within a word / dword is set, but it isn’t possible to select a message text depending on the
bit.

FIND_BIT_ADDRESS offers following functionality:

• Up to 7 bytes / words / dwords are composed in a certain order and the Tixi Device
counts the bits starting with the lowest bit of the byte / word / dword on the top of the
stack. With that a number (bit address) can be assigned to every alarm bit.

• In this list of bits several bits can be set at the same moment.

• From all simultaneous set bits only the first three will be detected. The bits are
 counted starting by 1.

• The alarm message text is selected via reference depending on the bit address.

FIND_BIT_ADDRESS – Find the address of the n’th bit set

Syntax:
<FIND_BIT_ADDRESS _="BitRank"
range=”NumberOfStackEntriesToScan” mask=”CountMask”/>

Description:
Beginning with the entry from the top of the stack (last loaded value!) search the
‘BitRank’th bit set in the series of the following ‘NumberOfStackEntriesToScan’
values of the stack. Count only the bits which are set in the CountMask starting by 1. If
such a bit is found, remove all instruction values from the stack and write the counter
result at the top of the stack, otherwise write a 0 at the top of the stack.

Elements:
BitRank:

First, second, third…Bit to find (1… 4294967295).

NumberOfStackEntriesToScan:

Number of values to scan (1….7)
Attention:

TiXML Reference Manual

 142

Before you call the” Find_Bit_Address” instruction, the specified number of
variables must be loaded on the stack, otherwise the instruction results in an
error.

CountMask:
 Masks the bits to count in a stack value.
 value of the mask.

 1 mask for bit 1
 2 mask for bit 2
 3 mask for bit 1 OR 2
 4 mask for bit 3
 5 mask for bit 1 OR 3
 etc…

Examples:
Define two process variables.
Load Variable_0=1234 and Variable_1=4321 from a PLC and find the first bit set
(according to the mask) in the first process variable and the second bit set in the second
process variable.

<Alarm_0_ProcVar>
 <Value>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <FIND_BIT_ADDRESS _="1" range="2" mask="64302"/>

 </Value>
</Alarm_0_ProcVar>

<Alarm_1_ProcVar>
 <Value>
 <LD _="/Process/Bus1/Device_0/Variable_1"/>
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <FIND_BIT_ADDRESS _="2" range="2" mask="64302" />

 </Value>
</Alarm_1_ProcVar>

Variable_0 is the variable on the top of the stack, because it is loaded after Variable_1.

Using the mask 64302 we get following bit addresses:
Mask 64302: 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0
Variable_0: 11 10 09 08 07 - 06 05 - - 04 - 03 02 01 -
Variable_1: 22 21 20 19 18 - 17 16 - - 15 - 14 13 12 -

Variable Values:
Variable_0 = 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0
Variable_1 = 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1

Result:
Alarm_0_ProcVar = 1 (first set bit within mask)
Alarm_1_ProcVar = 15 (second set bit within mask)

TiXML Reference Manual

 143

6.3.1.11 FORTH instruction
FORTH – FORTH instruction
Syntax:
 <FORTH _="Instruction"/>
Description:
Offers the possibility to use FORTH instructions. See http://www.forth.org/ for information
about the FORTH language.

Elements:
Instruction:
 FORTH source code

Examples:
Convertion of the GPS NMEA longitude "1316114.990234" into WGS84 format:
<Alarm_0_ProcVar format="F9.5">
 <Value>
 <LD _="/Process/Bus1/Device_0/Variable_0"/>
 <FORTH _="drop 1 100000 */mod 100000 * swap 100 * 60 / + 0"/>
 </Value>
</Alarm_0_ProcVar >

Result: 13.26856

6.3.2 RPN Error Codes
The "Get" command together with the AddInfo="Error" attribute can be used to read the
error state of a process variable (see chapter 2.4.6.5).

Following error codes may occur:
Code Description
-217 the interpreter encountered a syntax error
-218 error - stack underflow
-219 error converting number (maybe undefined)
-220 error reading value (group/key not found)
-221 error writinging value (group/key not found, ReadOnly)
-222 stack overflow
-223 variable exists, but is undefined

6.4 Access I/Os and Variables
Most variables of the system properties "/Process/" tree can be read and even set by the Get
and Set commands. You can also refer to variables in the message text or any other part of
the TiXML project code.

6.4.1 Refer to variable values
You can refer to the current state of the I/Os or the value of a ProcessVariable in a message
text or most other project code elements by inserting an appropriate reference. Because
these variables are part of the system state, they are also part of the system properties.

See chapter 3.1.1 and 3.8 for further information.

You can also use variables to change connections between configuration elements, e.g. a
variable may be used to change a MessageJobTemplate recipient path to select different
recipients (Contact_0 or Contact_1) depending on the variable value:

http://www.forth.org/

TiXML Reference Manual

 144

<Alarm_0 _="SMTP">

<Recipient _="/D/AddressBook/Contact_®/Process/MB/IO/I/P0;"/>
<Sender _="/D/AddressBook/MySelf"/>
<Body _="/UserTemplates/Message_0/Body"/>
<Subject path="/UserTemplates/Message_0/Subject"/>

</Alarm_0>

This may also be used to select alarm messages in different languages, different websites
and much more.

6.4.2 Read variable values
Using TiXML you can read the current state of an I/O or variable by the Get command.
See chapter 2.4.6.5 for further information.

Chapter 11 contains an overview of the correct I/O addresses according to the different Tixi
Devices.

Note: An open Tixi Device input is indicated by a “1", a closed input port by a “0".

6.4.3 Set outputs, Process- and PLC Variables
Output ports and independent ProcessVariables can be set by the Set command. See
chapter 2.4.6.5 for further information.

Set Output Port
Syntax:
<Set _="/Process/Address/PortType/Port" value="Value"/>

Description:
Set the status of the output port addressed by the PortAddress to the given value.
See chapter 11 for supported addresses.

Elements:
Address:
 Address to the output hardware
 MB/IO mainboard
 C40…C4E extension modules
PortType:

Addressing scheme (bit / byte / word / dword):
Port Type Range
Q 0,1
QB 0...255
QW 0... 65.535
QD 0... 4.294.967.295

Port:
 Address of the port
 P0…P12
Value:

Value to set. (0=open or 1=closed contacts)

Examples:
Close the contacts of relay P2 of the Tixi Device mainboard.

<Set _="/Process/MB/IO/Q/P2" value="1"/>

Open the contacts of output P2 of the extension module with address C42.

<Set _="/Process/C42/Q/P2" value="0"/>

TiXML Reference Manual

 145

Close the contacts of the first and the second port of the module with the address C40 and
open the ports with the index P2-P7.

<Set _="/Process/C40/QB/P0" value="3"/>

Set ProcessVariable
Syntax:
<Set _="Address" value="Value"/>

Description:
Set the value of the ProcessVariable addressed by “Address”.

Elements:
Address:
 Path to a process variable within the /Process/PV/ tree of the system properties.
Value:

Value to set. (string or number)

Examples:
Set the ProcessVariable "Alarm_0_ProcVar" to value “23":

<Set _="/Process/PV/Alarm_0_ProcVar" value="23"/>

Set the ProcessVariable "Shiftworker" to value “Contact_0":
<Set _="/Process/PV/Shiftworker" value="Contact_0"/>

Set PLC Variable
Syntax:
<Set _="Address" value="Value"/>

Description:
Set the value of the PLC Variable addressed by “Address”.

Elements:
Address:
 Path to a PLC variable within the /Process/ tree of the system properties.

Value:

Value to set. (string or number)

Examples:
Set the PLC Variable “Variable_0" from "Device_0" at "Bus1" to value “23":

<Set _="/Process/Bus1/Device_0/Variable_0" value="23"/>

6.5 Variable data types and formats

6.5.1 Variable data types
Following data types (attribute "simpleType") are used within the Tixi Device variable
processing:

simpleType Description
Uint8 unsigned 8 Bit value (0…255)
Uint16 unsigned 16 Bit value (0…65535)
Uint32 unsigned 32 Bit value (0…4294967295)

TiXML Reference Manual

 146

Int8 signed 8 Bit value
(-128…+127)

Int16 signed 16 Bit value
(-32768…32767)

Int32 signed 32 Bit value
(-2147483648…2147483647)

String text (0…n characters)
Bit digital value (0...1)
Float Flaoting point single precision (±3.402823466*1038)
Double Floating point double precision

(±1.7976931348623158*10308)

6.5.2 Variable data formats
Without any formatting the value of I/Os, Process-, System- and PLC variables will be shown
natively. The Tixi Device is able to reformat the displayed value into a number format, to
replace the status of a Boolean variable with a string and much more. The reformatted value
will be used within the text processing (chapter 3.8) and for "Get" commands. Datalogging
and Webserver have their own format attributes; the format of the External and ProcessVars
database has no function there.

Example:
<Variable_0 _="I" ind="1" acc="R" format="R10F+4,2;°C"/>

Variable_0 is an integer value “1234”, but with the format string the displayed value will look
like this:
<Get _="/Process/Bus1/Device_0/Variable_0"/>
<Get _="+12,34°C"/>

Formatting display value of variables

Syntax:
On PLC variable definition:
 <Variable ... simpleType="Uint8" exp="2" format="Elements;Text"/>

On process variable definition:
<ProcessVariable format="Elements;Text"/>

On Datalogging Record:
<ValueName _="Type" size="Length" format="Elements;Text"/>

On query of variable value:
 <Get _="/Process/PV/Alarm_0_ProcVar" format="Elements;Text"/>

TiXML Reference Manual

 147

Description:

The parameter format persists of two parts separated by semicolon:
1.part “Elements”:
Contains Format-Elements to describe the in- and output of values. Except thousand
limiter „T“ and number format „F“ the format elements can not be combined. The position
of the thousand delimiter within format instruction can be choosen at will. The format
depends on the type of variable. Not every format is available for all types of variables.
The availability of a format element depends on the attribute „simpleType“ of the
variablen definition. Therefore the valid basic types are given within this discription. The
first part may be left empty to show the native values.

 2.part “Text” (option):
 Contains a Text to be displayed together with the value. Within this text the value may
 be displayed using its given format of part 1. The position of the value is defined by
 %%, or will be displayed at the beginning, if %% is left. For some variables additional
 values (e.g. physical medium and unit) may be included. The second part may be left
 empty too. In this case no semicolon is necessary.

Example:
 Element and Text: “T’F+9,2 ;Radius %% cm“
 Only Element: “R16“
 Only Text: “; Text with:%% as value“

A Conditional format allows several sets of both parts "Elements;Text" depending on the
variable value:

 Syntax:
 {=Condition1}Format1{=Condition2}Format2...{=ConditionN}FormatN{}DefaultFormat

 The curly brackets enclose the condition value to be compared with the variable value. If
 the variable value is equal the first condition value, the subsequent format instruction will
 be used. Otherwise the next condition value will be compared. If no condition matches
 the variable value, the default format (empty condition "{}") will be used.

 Note:
 The Text part of the condition format requires %% to define the position of the value. If
 %% is not specified, the value will not be displayed.

 Example:
 "{=1.28}F.1;%%kW{=2.00};-.-{}F"
 with variable value 1.28: 1.2kW
 with variable value 2.00: -.-
 with variable value 1.18: 1.18

Format elements (Part 1):

? - logical alternative ?string1,string2
 This command is used to replace value by two predefined strings.
 If the variable is not zero string1 is displayed, otherwise string2 (boolen format).

Available for following simpleType values:
 Bit, Uint8, Uint16, Uint32, Int8, Int16, Int32

TiXML Reference Manual

 148

 Example:

<Variable_0 simpleType="Uint8" […] format=“?open,closed“/>

 <Get _="/Process/Bus1/Device_0/Variable"/>

 Tixi Device answers:
 <Get _="open"/> on value 1

* - case alternative *Value1:Text1*Value2:Text2**:Text3
 This command is used to replace a value by several predefined strings.
 If the variable value is equal "Value1", "Text1" is displayed, if the variable value is equals
 "Value2", "Text2" is displayed etc; on every other value Text3 is displayed.

 * separator for values to detect (The number of values is not limited.)
 ** separator for all other values

Available for following simpleType values:
 Uint8, Uint16, Uint32, Int8, Int16, Int32 (with exp="0" only)
 Example:

 <Variable_0 simpleType="Uint8" exp="0" […]
 format="*0:low*1:medium*2:high**:faulty"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers:
 <Get _="low"/> on value 0
 <Get _="medium"/> on value 1
 <Get _="high"/> on value 2
 <Get _="faulty"/> on value 7

R/r - Basis Rn/rn
 This command defines the basis n of the value.

n = 2 binary output (e.g. 01101010)
n = 8 octal output (e.g. 21057)
n = 10 decimal output (default, e.g. 1234)

 n = 16 hexadecimal output (e.g. AE03)

The upper/lower case display of hex letters (A-F) can be specified:
 R Only upper case letters (e.g. AE03)
 r Only lower case letters (e.g. ae03)

Available for following simpleType values:

 Uint8, Uint16, Uint32, Int8, Int16, Int32 (with exp="0" only)

TiXML Reference Manual

 149

 Example:

 HEX:
 <Variable_0 simpleType="Uint8" exp="0" [...] format="R16"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (variable value=90):
 <Get _="5A"/>

 Binary:
 <Variable_0 simpleType="Uint8" exp="0" [...] format="R2"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (variable value=90):
 <Get _="1011010"/>

T – thousand delimiter Tn

Defines the thousand delimiter.
n= , comma (e.g. 12,345,678)
n= . dor (e.g. 12.345.678)
n= ` apostrophe (e.g. 12`345`678)
n= empty no thousand delimiter (default)

Note:
Can be used in combination with number format element „F“.

Available for following simpleType values:

 Uint8, Uint16, Uint32, Int8, Int16, Int32, Float, Double
 Example:

 <Variable_0 simpleType="Uint32" [...] format="T."/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (variable value=98765):
 <Get _="98.765"/>

F - number format
 This command defines the format of the number value.
 It includes several subitems, which have to be in the given order:

 F "sign" "padding" "field width" "decimal point" "fixed point numbers"

 sign:
 Defines, if a sign should be displayed
 + the sign is displayed, even if the value is positive (e.g. „+12.3“ , „-12.3“)
 - the sign is only displayed, if the value is negative (e.g. „12.3“ , „-12.3“)
 empty the value is unsigned

 padding:
 Defines, how empty positions have to be filled (requires "field width")

 0 empty positions are filled with zeros (e.g. 0066.3)
 empty empty positions are cut off (e.g. 66.3)

TiXML Reference Manual

 150

 field width:
 Maximum size of the number value output, including sign,
 thousand delimiter, decimal point and the value itself. If omitted, the field
 width is not limited (and no insertion of padding characters takes place).
 Always define enough characters, otherwise the value will be cut off
 on the left side!

 decimal point:
 Character used as decimal separator (option)
 , a comma is used as decimal separator
 . a dot is used as decimal separator (default)

 fixed point numbers:
 Number of digits behind the decimal separator. Can be omitted, if no decimal point
 separator is given.

Note:
Can be used in combination with thousand delimiter format element „T“.

Available for following simpleType values:

 Uint8, Uint16, Uint32, Int8, Int16, Int32, Float, Double
 Examples:

 sign:
 <Variable_0 simpleType="Int16" […] format="F+"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (Value = 12345):
 <Get _="+12345"/>

 Padding, field width:
 <Variable_0 simpleType="Uint32" exp="-3"[…] format="F09"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (Value = 123456):
 <Get _="00123.456"/>

 Thousand delimiter, sign, field width, decimal point, fixed point numbers:
 <Variable_0 simpleType="Int32" […] format="T'F+9,2"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (Value = 123456):
 <Get _="+1'234,56"/>

S – string format Sn

Defines the length of a string value.
n number of character to display

Available for following simpleType values:

 String
 Example:

 <Variable_0 simpleType="String" [...] format="S3"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

TiXML Reference Manual

 151

 Tixi Device answers (variable value=ABCDEFG):
 <Get _="ABC"/>

Text (part 2):

%%
 Defines the position of the value within the output string.
 This part is available for all types of data. It is the only format option for data type
 „String“.
 Example:

 <Variable_0 simpleType="Int32" exp="-2" […]
 format="F+;Temp: %%K"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (Value = 12345):
 <Get _="Temp: +123.45K"/>

%M% – M-Bus Medium (VIF)
%U% – M-Bus Unit (VIF)
 Adds the M-Bus (Meterbus) Value Information Field data to the displayed value.

 Example:
 <Variable_0 simpleType="meterbus" exp="-2" […]
 format=";Medium:%M% value=%% %U%"/>

 <Get _="/Process/Bus1/Device_0/Variable_0"/>

 Tixi Device answers (Variable value=2530, Heat volume flow):
 <Get _="Medium:Heat value=25.30 Volume Flow [l/h]"/>

6.6 Analog input
Some Tixi Devices offer an analog input 0-10V (12bit).
To convert the value (0-4095, 10V=3798) corresponding to the measured voltage, the
“periphery” configuration can be used, which is part of the PROCCFG database. Without this
configuration the modem automatically converts the values from 0-10000 (10V=10000).

Database path: /PROCCFG/Periphery

Periphery – Analog input
Syntax:

<Periphery>
 <Module Name="ADC 1*12bit" Address="Module">
 <Numerator _="Numerator"/>
 <Denominator _="Denominator"/>
 <Tolerance _="Tolerance"/>
 <Rate _="Rate"/>
 </Module>
</Periphery>

Description:
Configuration of the analog input to convert the measured value.

TiXML Reference Manual

 152

Elements:
Module:

Interface address, e.g. analog input on mainboard: “C9a”

Numerator:
Number on top of the fraction to be multiplied by the measured value.

Denominator:
Number on bottom of the fraction to be multiplied by the measured value
(must be >0).

Tolerance:
 Changes to be ignored by the analog input relative to converted value. (Default 50)

Rate:
 Sample rate to refresh the analog input value. (Default 1000)

Examples:
a) Display 10 at 10V
If you want to get a range 0-10 (10V=10), there are two solutions:

Periphery
Use the periphery to adjust the range:
10V = 3798*(10/3798)

[<SetConfig _="PROCCFG" ver="v">
<Periphery>
 <Module Name="ADC 1*12bit" Address="C9a">
 <Numerator _="10"/>
 <Denominator _="3798"/>
 <Tolerance _="1"/>
 <Rate _="1000"/>
 </Module>
</Periphery>
</SetConfig>]

ProcessVar (see chapter 6.3)
OR load the AI into a process variable to define decimal places using the „format“ option
(10V = 10,000):

[<SetConfig _="PROCCFG" ver="v">
<ProcessVars>
 <AI format="F,3">
 <Value>
 <LD _="/Process/MB/A/AI/P0"/>
 </Value>
 </AI>
</ProcessVars>
</SetConfig>]

b) Display 30 at 10V
If you want to get a range 0-30 (10V=30), there are two solutions:

Periphery
Use the periphery to adjust the range:
10V = 3798*(30/3798)

[<SetConfig _="PROCCFG" ver="v">

TiXML Reference Manual

 153

<Periphery>
 <Module Name="ADC 1*12bit" Address="C9a">
 <Numerator _="30"/>
 <Denominator _="3798"/>
 <Tolerance _="1"/>
 <Rate _="1000"/>
 </Module>
</Periphery>
</SetConfig>]

ProcessVar (see chapter 6.3)
OR load the AI into a process variable and use math operations for the calculation
10V = 10000/1000*3
[<SetConfig _="PROCCFG" ver="v">
<ProcessVars>
 <AI>
 <Value>
 <LD _="/Process/MB/A/AI/P0"/>
 <DIV _="1000"/>
 <MUL _="3"/>
 </Value>
 </AI>
</ProcessVars>
</SetConfig>]

c) Display 500 at 3V
If you want to get a range 0-500 (3V=500), there are two solutions:

Periphery
Use the periphery to adjust the range:
3V = 3798*(3/10)*(500/(3798*(3/10))) = 1139,4*(500/1139,4) = 11394*(5000/11394)

[<SetConfig _="PROCCFG" ver="v">
<Periphery>
 <Module Name="ADC 1*12bit" Address="C9a">
 <Numerator _="5000"/>
 <Denominator _="11394"/>
 <Tolerance _="1"/>
 <Rate _="1000"/>
 </Module>
</Periphery>
</SetConfig>]

ProcessVar (see chapter 6.3)
OR load the AI into a process variable and use math operations for the calculation
3V = 500 = 3000/6

[<SetConfig _="PROCCFG" ver="v">
<ProcessVars>
 <AI>
 <Value>
 <LD _="/Process/MB/A/AI/P0"/>
 <DIV _="6"/>
 </Value>
 </AI>
</ProcessVars>
</SetConfig>]

6.7 S0-Interface

TiXML Reference Manual

 154

Some Tixi Devices offer two S0-interfaces which are used to count impulses as defined in
the S0-interface standard.

Active S0 devices (power supplied interface) has to be connected to “P+/P-“, passive S0
devices has to be connected to “A+/A-“ (supplied by modem power).

Impulse length specification:
Minimum: 250µs up to 250µs*255
Maximum: unlimited

The Tixi Device counts these impulses into temporary memory. With a special
synchronization event this value will be written into a readable variable which may be used
for data logging or event creation.

The S0 counters and related variables are not written into flash memory. To keep the
counted values during power lost, they have to be written into ProcessVars (see chapter 6.3).

The Tixi Device offers different S0-interface modes and value convertions which are
configured in the periphery group of PROCCFG database.

Database path: /PROCCFG/Periphery

Periphery – S0 interface
Syntax:
 <Periphery>
 <Module Name="S0 (PIC)" Address="Module">
 <Numerator _="Numerator"/>
 <Denominator _="Denominator"/>
 <Mode _="0xMode"/>
 <Channel0 _="S0-0-length"/>
 <Channel1 _="S0-1-length"/>
 <TimeScale _="Time"/>
 </Module>
 </Periphery>
Description:

Configuration of the S0-interface mode and value convertion.
Elements:
Module:

Interface address, e.g. S0 interface on mainboard: “C3e” or “I3e”

Numerator:
Number on top of the fraction to be multiplied by the counted impulses.

Denominator:
Number on bottom of the fraction to be multiplied by the counted impulses
(must be >0).

Mode:
 Defines the S0-interface mode using 3 bits: 0xCBA

 Bit C: Defines the synchronization mode (option)

 0: synchronization via TimeScale
 1: synchonisation via “S0_Sync” event handler command

 Bit B: Defines operation mode of S0 channel 1

 0: relative counter: on synchronization the counted value will be
 copied into readable variable and channel counter is reset to 0.

TiXML Reference Manual

 155

 1: absolute counter: on synchronization the counted value will be
 copied into readable variable (no counter reset to 0).

 Bit A: Defines operation mode of S0 channel 0

 Modes see Bit B.

 Valid mode combinations: 000,100,010,110,001,101,011,111

S0-0-length:
 Impulse length (ms) on S0-interface S0-0.

S0-1-length:
 Impulse length (ms) on S0-interface S0-1.

Time:
 Time between two synchronization events (in seconds).

 The TimeScale function depends on synchonisation mode:

1. If Bit C is set to 0 the Tixi Device will generate the synchronization by itself in
the given TimeScale beginning from system start.

2. If bit C is set to 1, the TimeScale may be ignored (useless).

S0-interface variables:

These variables are created by the system in the process tree under the module address of
the S0-interface:
 P0: counted impulses on channel 0 (only if Bit A is <2)
 P1: counted impulses on channel 1 (only if Bit B is <2)
 P2: currently not used
 P3: currently not used
 P4: measured time of last synchonization periode
 P5: event trigger, set to 1 on synchronization (power off delayed)

 P0-P1 are always converted using numerator/denominator.

Examples:

1. Channel0 used for counting (absolute), Channel 1 used for counting (relative). No value

convertion. Impulse length 30ms (channel0) and 40ms (channel1). Synchonization event
created by scheduler every 5 minutes (300s):

 <Periphery>
 <Module Name="S0 (PIC)" Address="I3e">
 <Numerator _="1"/>
 <Denominator _="1"/>
 <Mode _="0x100"/>
 <Channel0 _="30"/>
 <Channel1 _="40"/>
 <TimeScale _="300"/>
 </Module>
 </Periphery>

Values on first cycle, after 300 impulses on both interfaces:
 P0: 300
 P1: 300

TiXML Reference Manual

 156

 P2: ignore
 P3: ignore
 P4: 300 (fixed, because of scheduler)
 P5: 0 (1, if read directly after synchronization)

Values on second cycle, after additional 300 impulses on both interfaces:
 P0: 600
 P1: 300
 P2: ignore
 P3: ignore
 P4: 300 (fixed, because of scheduler)
 P5: 0 (1, if read directly after synchronization)

2. Channel0 used for counting (relative), Channel 1 used for counting (relative). Value

convertion (impulse * 11.25). Impulse length 30ms. Synchonization event created by
TimeScale every 500s after system start:

 <Periphery>
 <Module Name="S0 (PIC)" Address="I3e">
 <Numerator _="450"/>
 <Denominator _="40"/>
 <Mode _="0x000"/>
 <Channel0 _="30"/>
 <Channel1 _="30"/>
 <TimeScale _="500"/>
 </Module>
 </Periphery>

Values if 300 impulses counted on channel 0 and 400 impulses on channel 1:
 P0: 3375
 P1: 4500
 P2: ignore
 P3: ignore
 P4: 500 (fixed, because of TimeScale synchonization mode)
 P5: 0 (1, if read directly after synchronization)

6.8 Signal LED
On the front of the Hx4xx Tixi Devices a “Signal" LED can be found. This LED can be set to
different colors and/or flash cycles manually or by event.

Variable path: /Process/MB/SignalLED

Color Value Status
Cyclic
None 0 off
Red 1 on
 2 blinking (200 ms on, 200 ms off)
 3 blinking (50 ms on, 50 ms off)
 4 blinking (200 ms on, 600 ms off)
 5 blinking (200 ms off, 600 ms on)
 6 blinking 2 time (50ms on, 50ms off) and 600ms off
 7 Flash once every 3 sec
 8 DoubleFlash every 3 sec

TiXML Reference Manual

 157

Green 9 on
 10 blinking (200 ms on, 200 ms off)
 11 blinking (50 ms on, 50 ms off)
 12 blinking (200 ms on, 600 ms off)
 13 blinking (200 ms off, 600 ms on)
 14 blinking 2 time (50ms on, 50ms off) and 600ms off
 15 Flash once every 3 sec
 16 DoubleFlash every 3 sec
Red/Green 17 blinking 2 time (50ms green, 50ms off, 50ms red, 50ms off) and 600ms

off
 18 blinking (200 ms green, 600 ms red)
 19 blinking (200 ms red, 600 ms green)
 20 blinking (200 ms green, 200 ms off, 200 ms red, 200 ms off)
Once
Red 21 blinking 1 time
 22 blinking for 4 sek (200 ms on, 200 ms off)
 23 blinking 2 time (50ms on, 50ms off)
Green 24 blinking 1 time
 25 blinking for 4 sek (200 ms on, 200 ms off)
 26 blinking 2 time (50ms on, 50ms off)
Red/Green 27 blinking 1 time

Cyclic LED status (0-20) are kept after reset.

Example:
Command to set the signal LED to fast green flashing:
[<Set _="/Process/MB/SignalLED" value="14"/>]

7 Scheduler
The scheduler can be used to create events at predefined times. These events may be
sending status messages or live signals, changing variables or changing database entries
e.g. address book entries for shift plans.

7.1 Configuration

Database path: /SCHEDULE/Schedule

<Schedule>

 <Time1 _="Event">
 <Weekday _="Mo,Th"/>
 <Time _="19:00"/>
 <Month not="Jan"/>
 </Time1>

 <Timer4 _="Event30Min">
 <Minute _="0,30"/>
 </Timer4>

</Schedule>

Scheduler
configuration

TiXML Reference Manual

 158

Scheduler Configuration
Syntax:

<ScheduleName _="Event">
<ScheduleTimes/>
...

</ScheduleName>

Description:

Attribute group which defines the times of the scheduled event.

If several schedulers are using the same point of time, the EventHandler are triggered
in the order of the schedulers (from top to bottom).

Elements:
ScheduleName:

Name of the schedule.

Event:
Name of the event, triggered when the schedule time is reached.

ScheduleTimes
List of Attributes describing the times when the event is triggered.
(see times configuration)

Example:
Scheduler configuration for the "Alarm_0" and “Datalogging_0_Log" event.
The alarm message will be sent each Monday and Thursday at 19:00 but not in January.
The Datalogging_0_Log writes the current port status every 30 minutes into a logfile.

<Schedule>
 <Time1 _="Alarm_0">
 <Weekday _="Mo,Th"/>
 <Time _="19:00"/>
 <Month not="Jan"/>
 </Time1>
 <Timer4 _="Datalogging_0_Log">
 <Minute _="0,30"/>
 </Timer4>
</Schedule>

7.2 Time parameters
Times may be configured as periods e.g. “start-end" or as enumeration e.g.
“time1,time2,time3". It is possible to exclude times using “not=" instead of “_=".

Minute
Description:
Minute inside an hour.
Valid attributes: “0,1,2,3,...,59"
Example:
Every quarter of an hour
<Minute _=“0,15,30,45"/>

Every minute
<Minute _=“0-59"/>

Hour
Description:
Hour inside a day.
Valid attributes: “0,1,2,3,...,23"

TiXML Reference Manual

 159

Example:
Working hours
<Hour _="9-17"/>

Time
Description:
Exact times in format “h:mm".
Valid attributes:
 h: “0,1,2,3...,23"
 mm:“00,01,02,...,59"
Example:
at 8:55 and 13:00
<Time _="8:55,13:00"/>

Data
Description:
Exact Date in format “d.m.[yyyy]". Year is option.
Valid attributes:
 d: “1,2,3,...,31"
 m: “1,2,3,...,12"
 yyyy: “1970,1971,1972,...,2038"
Example:
no german holidays
<Data not="1.1.,1.5.,3.10.,24.12.-26.12.,31.12." />

Day
Description:
Day valid for all month.
Valid attributes: “1,2,3,...,31"
Example
First five days of each month
<Day _="1-5"/>

Month
Description:
Month valid for all years.
Valid attributes: “Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec"
or “1"-“12".
Example:
February, June and October
<Month _="Feb,6,Oct"/>

Weekday
Description:
Weekday valid for all weeks.
Valid attributes: “Mo, Tu, We, Th, Fr, Sa, Su"
or “0" (=Su) – “6" (=Sa).
Example:
Workdays only
<Weekday _="Mo-Fr"/>

Condition
Description:
Condition is used to refer to other times within /SCHEDULE/condition database.
Example:
<Condition _="Condition/FiveMinutes"/>

TiXML Reference Manual

 160

Example

[<SetConfig _="SCHEDULE" ver="y">
<Condition>
 <FiveMinutes>
 <Minute _="0,5,10,15,20,25,30,35,40,45,50,55"/>
 </FiveMinutes>
 <Holidays>
 <Data _="1.1.,1.5.,3.10.,25.12.,26.12."/>
 </Holidays>
 <NoHoliday>
 <Data not="1.1.,1.5.,3.10.,25.12.,26.12."/>
 </NoHoliday>
</Condition>
</SetConfig>]

[<SetConfig _="SCHEDULE" ver="y">
<Schedule>
 <!-- every Monday and Thursday at 19:00, but not in January -->
 <Time1 _="Event">
 <Weekday _="Mo,Th"/>
 <Time _="19:00"/>
 <Month not="Jan"/>
 </Time1>
 <!—Monday to Friday at 8:00-20:00 all 5 minutes but not at holidays -->
 <Time2 _="Event">
 <Weekday not="Sa,Su"/>
 <Hour _="8-20"/>
 <Condition _="Condition/Fiveminutes"/>
 <Condition not="Condition/Holidays"
 </Time2>
 <!--Monday to Friday 7:40 to 16:40 all 20 minutes but not at holidays-->
 <Time3 _="Event">
 <Weekday _="Mo-Fr"/>
 <Time _="7:40-16:40"/>
 <Minute _="0,20,40"/>
 <Condition _="Condition/NoHoliday"/>
 </Time3>

 <!-- all 30 minutes -->
 <Timer4 _="Event30Min">
 <Minute _="0,30"/>
 </Timer4>
</Schedule>
</SetConfig>]

7.3 ScheduleDefinition
To prevent upload problems of the SCHEDULE database groups (conditions for schedulers
missing - vice versa) Tixi.Com has made the decision to redesign the SCHEDULE database.
We recommend to use the new structure even if the old format is still supported and used by
TILA (Note: don’t mix old and new structure!).
The “Schedule” and the “Condition” group are now both part of the “ScheduleDefinition”
group inside SCHEDULE database. The structure inside both groups didn’t change. Refer to
chapters 7.1 and 7.2 for more information.

Database path: /SCHEDULE/ScheduleDefinition

Example:

TiXML Reference Manual

 161

[<SetConfig _="SCHEDULE" ver="y">
<ScheduleDefinition>

<Schedule>
 <Time2 _="Event">
 <Weekday not="Sa,Su"/>
 <Hour _="8-20"/>
 <Condition _="Condition/Fiveminutes"/>
 </Time2>

</Schedule>
<Condition>

 <FiveMinutes>
 <Minute _="0,5,10,15,20,25,30,35,40,45,50,55"/>
 </FiveMinutes>

</Condition>
</ScheduleDefinition>
</SetConfig>]

7.4 Testing

ScheduleTest - Calculates a list of scheduler event times
Syntax:
 <ScheduleTest _="range" max="maxcount"/>
Description:

This command returns a list of calculated scheduler event times in a given time range.

Parameter:
range:
 "Timestamp1-Timestamp2": scheduled event times between both timestamps
 "Timestamp": scheduled event times from now until timestamp
 "-Timestamp": scheduled event times from now until timestamp
 "Timestamp-": scheduled event times from timestamp to maxcount

 Timestamp format: "DD.MM.YYYY[,hh:mm]" or "YYYY/MM/DD[,hh:mm]"

 "next N unit" scheduled event times from now until next N units

 Units format: "Hours", "Days", "Months", "Years")

maxcount:
 Number of scheduler event times to calculate (default: 100).

Return:

If no error (command is processed):

<ScheduleTest>
 <SE_1 _="2004/03/04,16:10:00">
 <Event _="Eventname"/>
 </SE_1>
 <SE_2 _="2004/03/04,16:10:00">
 <Event _="Eventname"/>
 </SE_2>

 ...

 <SE_100 _="2004/03/06,09:20:00">
 <Event _="Eventname"/>
 </SE_100>
</ScheduleTest>

TiXML Reference Manual

 162

On error (command is not processed):
see default error frame (chapter 2.4.4)

Examples:

All scheduled event times of the next 14 days, max 100 entries:
 <ScheduleTest _="next 14 Days"/>

All scheduled event times from now until 31.12.2003, max 25 entries:
 <ScheduleTest _="-31.12.2003" max="25"/>

All scheduled event times between 22.8.2003 09:00 and 31.10.2003 22:00, max 100 entries
 <ScheduleTest _="22.8.2003,9:00-2003/10/31,22:00"/>

All scheduled event times starting from 1.1.2004, max 50 entries:
 <ScheduleTest _="1.1.2004-" max="50"/>

TiXML Reference Manual

 163

8 Sequencer
The scheduler (previous chapter) enables the modem to change values on a point of time.
The values have to be part of the set command inside the event handler. To change values
more dynamically, a special feature called “sequencer” was implemented.

The sequencer uses different profiles of value lists with points of time to change the values.
Each list may have a special priority. The lowest priority (0) will be active always, higher
priorities will deactivate the the lower priorities at the given point of time.

The Tixi Device will process these lists sequencially to change the associated variables.

8.1 Configuration

The configuration of the sequencer is part of the SCHEDULE database, group “Sequencer”.

Database path: /SCHEDULE/Sequencer

Sequencer – Profiles
Syntax:
 <Sequencer>
 <Profilename event="Eventname" logfile="Logfilename"/>
 </Sequencer>

Description:

This configuration enables a sequencer profile and associates an event and logfile to it.

Parameter:
Profilename:

 The sequencer may have several profiles for different events. Random names are
 possible but have to be unique throughout the configuration.

Eventname:
 Name of the event handler which will process the sequencially changed values. The
 event handler has to exist inside EventHandler group (database EVENTS).

Logfilename:
 Name of the logfile in which a copy of the profile will be stored during
 “SetSequence” command. The logfile has to exist inside LogDefinition group
 (database LOG)

Example:

Sequencer profile which will call the event “Switch_0”. The Profiles will be copied into
“Profiles” logfile:

 <Sequencer>
 <Sequence_0 event="Switch_0" logfile="Profiles"/>
 </Sequencer>

TiXML Reference Manual

 164

8.2 Changing sequences
The sequencer profiles configured in the previous chapter are empty by default. To define
sequencer times and values, the SetSequence command is used:

SetSequence – Defines sequencer event times and values
Syntax:
 <SetSequence _="Profile" priority="n" mode="format"
 mask="Mask"
 <T date="Date" time="Time" P1="p1" P2="p2" … P6="p6"/>
 …
 </SetSequence>
Description:

This command defines the sequencer event times and values. The values will be
processed by the associated event handler at the given point of time.

Parameter:
Profile:

Name of profile to be changed. Has to exist inside Sequencer group.

n:
Priority of the sequencer profile. Priority range: 0(low)-255 (high). Only three different
priorities per profile are possible. Priority 0 has to be the basic profile. See next
chapter to learn more about profile priorities.

format:
The secuencer profiles may be transfered in two different formats:
 XML: Data will be transferred in TiXML syntax (default)
 TEXT: Data will be transferred in TEXT format (for profiles
 with CSV format)

In TEXT format the raw data has to be enclosured by a XML frame:
 <!CDATA[
 ****Data****
]]>

Mask:
Defines the data format in TEXT mode (not necessary for XML-mode)
 d: Date
 t: Time
 1: Value P1
 …
 6: Value P6

 e.g.
 mask="d;t;1;2;3;4;5;6"
 for data in this format:
 DD.MM.YYYY;hh:mm;P1;P2;P3;P4;P5;P6
 01.01.2004;09:15;200;300;400;500;600

Date:
Date for the sequenced time of event.
Valid formats:
 DD.MM
 DD.MM.YY
 DD.MM.YYYY
 YY/MM/DD
 YYYY/MM/DD

TiXML Reference Manual

 165

An asterisk “*” or “0” may be used to replace each unit.
E.g. “00.03.00” is same as “*.03.*” which means every day in march every year.

Time:
Point of time for the sequenced event. Format: hh:mm
An asterisk “*” may be used to replace each unit.

p1…p6:
List of values to be processed by sequenced event handler (max 6).
The event handler has to refer to these values via process reference ®~/Px;
(see chapter 3.1.1)

Return:

If no error (command is processed):

<SetSequence/>

On error (command is not processed):
see default error frame (chapter 2.4.4)

Examples:

1. Every day at 09:00 a “minimum” variable (P1) has to be 20, a maximum variable (P2) has
to be 80. Every day at 18:00 a “minimum” variable (P1) has to be 30, a maximum variable
(P2) has to be 70.

 [<SetSequence _="LevelProfile" priority="0">
 <T date="*.*.*" time="09:00" P1="20" P2="80"/>
 <T date="*.*.*" time="18:00" P1="30" P2="70"/>
 </SetSequence>]

Date “*.*.*” will be processed on each day, every month, every year.

Same Example in TEXT format:

 <SetSequence _="LevelProfile" priority="0" mode="TEXT" mask="d;t;1;2">
 <![CDATA[
 ..*;09:00;20;80
 ..*;18:00;30;70
]]>
 </SetSequence>

2. Additional to the previous example, both variables should have following values on each
day in april:

 [<SetSequence _="LevelProfile" priority="1">
 <T date="*.04.*" time="09:00" P1="15" P2="85"/>
 <T date="*.04.*" time="18:00" P1="25" P2="75"/>
 </SetSequence>]

Date “*.04.*” will be processed on each day, in april, every year. Due to the higher priority,
the profile of example 1 will be inactive at the given time.

TiXML Reference Manual

 166

3. Values changes every 15 minutes:
 [<SetSequence _="PowerProfile" priority="0">
 <T date="*.*.*" time="*:00" P1="10" P2="80"/>
 <T date="*.*.*" time="*:15" P1="20" P2="90"/>
 <T date="*.*.*" time="*:30" P1="30" P2="100"/>
 <T date="*.*.*" time="*:45" P1="20" P2="90"/>
 </SetSequence>]

To delete a sequence, the sequence definition inside sequencer configuration has to be
deleted.

A sequence may also be transferred to the modem via email or Express-Email.
See chapter 9 for more information.

8.2.1 Profile priorities
For each sequencer profile a maximum of 3 priorities is allowed:

The sequencer handles the profiles in different ways, related to their priority:

Priority 0:
A sequence with priority 0 will be replaced by a sequence with priority 0.

Priority >0
A sequence with priority >0 will be supplemented by new data with same priority. All expired
entries will be deleted.

If several sequencer events inside a single profile are configured with the same point of time,
the sequence with the highest priority will be processed only.

Examples:

A) Between two points of time with higer priority, no lower priorities will be processed:

B) If a sequence with same priority >0 was configured several times, all lower priorities
between both sequences will be processed:

TiXML Reference Manual

 167

8.3 Testing
SequenceTest - Calculates a list sequencer event times
Syntax:
 <SequenceTest _="Profilename" range="Range" max="maxcount"/>
Description:

This command returns a list of calculated secuencer event times in a given time range.

Parameter:
Profilename:

Name of profile to be tested. Has to exist inside Sequencer group.

Range:
 "Timestamp1-Timestamp2": sequencer event times between both timestamps
 "Timestamp": sequencer event times from now until timestamp
 "-Timestamp": sequencer event times from now until timestamp
 "Timestamp-": sequencer event times from timestamp to maxcount

 Timestamp format: "DD.MM.YYYY[,hh:mm]" or "YYYY/MM/DD[,hh:mm]"

 "next N unit" scheduled event times from now until next N units

 Units format: "Hours", "Days", "Months", "Years")

maxcount:

Number of sequencer event times to calculate (default: 100).

Return:

If no error (command is processed):

<SequenceTest>
 <SEQ_1 _="2004/02/04,08:01:00">
 <Event _="Eventname" P1="4" P2="14" P3="" P4=""
 P5="" P6=""/>
 </SEQ_1>
 <SEQ_2 _="2004/02/04,08:02:00">
 <Event _=" Eventname" P1="5" P2="13" P3="" P4=""
 P5="" P6=""/>
 </SEQ_2>
 …
 <SEQ_100 _="2004/02/04,09:40:00">
 <Event _=" Eventname" P1="9" P2="7" P3="" P4=""
 P5="" P6=""/>
 </SEQ_100>
</SequenceTest>

On error (command is not processed):
see default error frame (chapter 2.4.4)

Examples:

All sequencer event times of the next 14 days, max 100 entries:
 <SequenceTest _="Sequence_0" range="next 14 Days"/>

All sequencer event times from now until 31.12.2003, max 25 entries:
 <SequenceTest _="Sequence_0" range="-31.12.2003" max="25"/>

TiXML Reference Manual

 168

All sequencer event times between 22.8.2003 09:00 and 31.10.2003 22:00, max 100 entries
 <SequenceTest _="Sequence_0" range="22.8.2003,9:00-2003/10/31,22:00"/>

All sequencer event times starting from 1.1.2004, max 50 entries:
 <SequenceTest _="Sequence_0" range="1.1.2004-" max="50"/>

8.4 Example

Sequencer logfile definition:

[<SetConfig _="LOG">
 <LogFiles>
 <Profiles size="125000"/>
 </LogFiles>
</SetConfig>]

Sequencer profile definition:

[<SetConfig _="SCHEDULE">
 <Sequencer>
 <Sequence_0 event="Switch_0" logfile="Profiles"/>
 </Sequencer>
</SetConfig>]

Event Handler to be triggered by sequencer:

<Switch_0>
 <Set _="/Process/Bus1/Device_0/Variable_0" value="®~/P1;"/>
 <Set _="/Process/Bus1/Device_0/Variable_1" value="®~/P2;"/>
</Switch_0>

Sequencer times and values:

[<SetSequence _="Sequence_0" priority="0">
 <T date="*.*.*" time="*:00" P1="10" P2="80"/>
 <T date="*.*.*" time="*:15" P1="20" P2="90"/>
 <T date="*.*.*" time="*:30" P1="30" P2="100"/>
 <T date="*.*.*" time="*:45" P1="20" P2="90"/>
</SetSequence>]

TiXML Reference Manual

 169

9 Processing incoming messages

9.1 Introduction
A Tixi Device can be controlled by received Express-Emails, emails and SMS or by a simple
phone call (callerID).

Scenario:
The Tixi Alarm Modem is connected to a PLC with output ports. At the output ports, some
actuators are connected by an electrical signal line (for example a fan).

The remote control user sends a SMS including a password (SECRET) and a command
word (HEATER_ON):

The Tixi Device receives the message and triggers an event with the same name as the
command word (in the example 'FAN_ON'). This is handled as if received from a client as an
event message (DoOn via Command).

Please note that the command name of the incoming SMS message will be converted into
upper case, therefore the EventHandler names must be upper case too.

The event is processed according to the commands defined by the corresponding event
handler configuration:

Database path: /EVENTS/EventHandler

<EventHandler>

<FAN_ON>
 <Set _="/Process/Bus1/Device_0/Variable_0" value="1"/>

<SendMail _="MessageJobTemplates/Switch_0"/>
</FAN_ON>

</EventHandler>

The event sets output 'Variable_0' of the connected PLC which starts the connected fan.

Additionally, a message job is started which sends an answer back to the sender of the
command, e.g.:

SECRET FAN_ON

OK: FAN_ON

TiXML Reference Manual

 170

9.2 Event via incoming call (callerID)
All Tixi Alarm Modems are able to detect incoming callerIDs using the CLIP service. If a
callerID matches an entry in the callerID database, the call will not be answered by the Alarm
Modem. Instead it will start processing the event assigned to the callerID.

This may be used to open a garage door just by a simple phone call without any costs for
instance.

The callerID database is inside the ISP database.

Database path: /ISP/IncomingCallTrigger

Incoming Call Trigger

Syntax:
<IncomingCallTrigger>
 <NoX _="callerID" event="EventName"/>
</IncomingCallTrigger>

Description:
A list of callerIDs (max. 5) with events which will be processed after this callerID was
detected by the Tixi Alarm Modem.

Elements:
X: Entry number. Value 1 - 5

CallerID:

CallerID to be detected by the Tixi Alarm Modem.
Use wildcards “*” to replace a part of the callerID or “?” to replace a single digit.

EventName:

Name of the event to be processed if the callerID was detected.

Example:
Mobile phone number +491721234567 will trigger the event “Switch_0", mobile phone
numbers +491727654321 and +491727654355 will trigger the event “Switch_1”:

[<SetConfig _="ISP">
 <IncomingCallTrigger>
 <No1 _="+491721234567" event="Switch_0"/>
 <No2 _="+4917276543*" event="Switch_1"/>

 </IncomingCallTrigger>
</SetConfig>]

Note: The format of the caller ID depends on the telephone provider. Sometimes the area
code is left or "+" is transmitted as "00". Use the Tixi CLIP tool to detect the caller ID format
required by the connection of your Alarm Modem.

9.3 Event via incoming message (Express-E-Mail, SMS, Email)
To map an incoming message to an event, the message (subject) must have a special
syntax. Example:

SECRET SET_HEATER 1

Password

Event Name

Parameter Value

TiXML Reference Manual

 171

An event handler must be configured accordingly to the submitted Event Name (for SMS
always upper case!). Like for DoOn command, additional parameters can be used which can
be processed in the event handler, the message job template or the message text template.

The following message format is required.

Incoming Message

Syntax:
Password SPACE EventName SPACE Parameter1 SPACE Parameter2...

Description:
Format of the subject line (email, Express-E-Mail) or content (SMS) of an incoming
message to trigger an event.

Elements:
Password:

Password to access the device. 1...20 characters (not empty), no SPACE character
allowed.

EventName:

Name of the event to be triggered (for SMS upper case!). There must be an event
handler configured for this event. 1...20 characters (not empty), XML tag characters only.

Parameter1...Parameter10:

Value of the n'th parameter (no SPACE character, only 29 characters per parameter if
using SMS).

Examples:
User password SECRET, trigger the HEATER_ON event and submit the parameter 1.

SECRET HEATER_ON 1

TiXML Reference Manual

 172

9.3.1 Event paramater generated by an incoming message
Unlike the default events, the event created by incoming messages contains predefined
parameters. These parameters can be used to control the Tixi Device or to create an answer
message.

The event handling can be tested independently. Therefore, the event messages created by
an incoming message can be "simulated" by sending a DoOn message with the events
described below. When this test is finished ok, the message to event map could be tested by
sending the corresponding incoming messages.

Each message type has its own specific parameter list:

The event generated by incoming message has the following format:

Event created by an incoming message

Syntax:
<DoOn _="EventName">

<Event _="EventName"/>
<Password _="Password"/>
<Alpha _="SenderAlias"/>
<OA _="OA"/>
<Time _="ReceiveTime"/>
<RemoteSerialNo _="RemoteSerialNo"/>
<RemoteBoxnumber _="RemoteBoxnumber"/>
<RemoteBoxname _="RemoteBoxname"/>
<Text _="MessageText"/>
<P1 _="ValuesOfParameter1"/>
<P2 _="ValuesOfParameter2"/>
<P3 _="ValuesOfParameter3"/>
<P4 _="ValuesOfParameter4"/>
<P5 _="ValuesOfParameter5"/>
<P6 _="ValuesOfParameter6"/>
<P7 _="ValuesOfParameter7"/>
<P8 _="ValuesOfParameter8"/>
<P9 _="ValuesOfParameter9"/>
<P10 _="ValuesOfParameter10"/>

</DoOn>

Description:
Structure of the event created by an incoming message.

Elements:
EventName:

Event name parsed from received message text.
Password:

Password parsed from received message text.
SenderAlias:

Address of the sender (Express-E-Mail) or alphanumerical representation of the
originating address if any stored in the chip card (SMS) or alias name of sender (email).

.OA:

Originating address (callerID) received from telephone network (Express-E-Mail, SMS)
or sender address (from field) parsed from received message header (email).

TiXML Reference Manual

 173

ReceiveTime:

 Time stamp received from GSM network (SMS) or Time stamp indicating when the
 message was received (Express-E-Mail, email).
RemoteSerialNo:

The serial number of the Tixi Device, which sends the message. (Express-E-Mail only)
RemoteBoxnumber:

The phone number of the sending Tixi Device, as defined in the USER database (see
chapter 3.2). (Express-E-Mail only)

RemoteBoxname:

The name of the sending Tixi Device, as defined in the USER database (see chapter
3.2). (Express-E-Mail only)

MessageText:

The text from the ‘Subject’ line of the received message (email, Express-E-Mail) or
content of the message (SMS).

P1...P10(optional)

Value of the parameter delivered by the message if any.

Examples:
Event message generated from an incoming Express-E-Mail of this format: SECRET
HEATER_ON 1

<DoOn ="HEATER_ON">
<Event _="HEATER_ON"/>
<Password _="SECRET"/>
<RemoteSerialNo _="12345"/>
<RemoteBoxnumber _="+49-30-40608582"/>
<RemoteBoxname _="Test Tixi Alarm Modem"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="SECRET HEATER_ON 1"/>
<Alpha _=" TEST+49-30-40608582"/>
<OA _="03040608582"
<P1 _="1"/>

</DoOn>

Event message generated from an incoming SMS of this format: SECRET HEATER_ON 1
<DoOn ="HEATER_ON">

<Event _="HEATER_ON"/>
<Password _="SECRET"/>
<OA _="+491717959463"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="SECRET HEATER_ON 1"/>
<Alpha _="CON"/>
<P1 _="1"/>

 </DoOn>

TiXML Reference Manual

 174

Event message generated from a received POP3 email with this subject:
SECRET HEATER_ON 1

<DoOn ="HEATER_ON">
<Event _="HEATER_ON"/>
<Password _="SECRET"/>
<OA _="support@tixi.com"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="SECRET HEATER_ON 1"/>
<Alpha _="support@tixi.com"/>
<P1 _="1"/>

 </DoOn>

9.3.2 System events for invalid incoming messages
In case the message cannot be processed properly, a predefined event is triggered that
allows notification of the fault to be given and enables the tracking of intrusion attempts.

Event created on event processing error

Syntax:
<DoOn _="System/TixiInvalidEvent">
 …
 or
<DoOn _="System/SMSInvalidEvent">
 …
 or
<DoOn _="System/POPInvalidEvent">

<Event _="EventName"/>
<Password _="Password"/>
<Alpha _="SenderAlias"/>
<OA _="OA"/>
<Time _="ReceiveTime"/>
<RemoteSerialNo _="RemoteSerialNo"/>
<RemoteBoxnumber _="RemoteBoxnumber"/>
<RemoteBoxname _="RemoteBoxname"/>
<Text _="MessageText"/>
<P1 _="ValuesOfParameter1"/>
<P2 _="ValuesOfParameter2"/>
<P3 _="ValuesOfParameter3"/>
<P4 _="ValuesOfParameter4"/>
<P5 _="ValuesOfParameter5"/>
<P6 _="ValuesOfParameter6"/>
<P7 _="ValuesOfParameter7"/>
<P8 _="ValuesOfParameter8"/>
<P9 _="ValuesOfParameter9"/>
<P10 _="ValuesOfParameter10"/>
<ErrNo _="ErrNo"/>
<ErrText _="ErrorText"/>

</DoOn>

Description:
Structure of the event created by an incoming message which could not be processed. This
event corresponds to a DoOn event message. Note that an event handler of that name must
exist. The event parameters depend on the type of message.

TiXML Reference Manual

 175

Elements:
EventName:

Event name parsed from received message text.
Password:

Password parsed from received message text.
SenderAlias:

Address of the sender (Express-E-Mail) or alphanumerical representation of the
originating address if any stored in the chip card (SMS) or alias name of sender (email).

.OA:

Originating address (callerID) received from telephone network (Express-E-Mail, SMS)
or sender address (from field) parsed from received message header (email).

ReceiveTime:

 Time stamp received from GSM network (SMS) or Time stamp indicating when the
 message was received (Express-E-Mail, email).
RemoteSerialNo:

The serial number of the Tixi Device, which sends the message. (Express-E-Mail only)
RemoteBoxnumber:

The phone number of the sending Tixi Device, as defined in the USER database (see
chapter 3.2). (Express-E-Mail only)

RemoteBoxname:

The name of the sending Tixi Device, as defined in the USER database (see chapter
3.2). (Express-E-Mail only)

MessageText:

The text from the ‘Subject’ line of the received message (email, Express-E-Mail) or
content of the message (SMS).

P1...P10(optional)

Value of the parameter delivered by the message if any.
ErrNo:

Numerical representation of the processing error.
ErrorText:

Textual representation of the processing error.

TiXML Reference Manual

 176

Examples:
Error event message generated from an incoming Express-E-Mail of this format: SECRET
HEATERON 1

<DoOn _="System/TixiInvalidEvent ">
<Event _="HEATERON"/>
<Password _="SECRET"/>
<RemoteSerialNo _="12345"/>
<RemoteBoxnumber _="+49-30-40608582"/>
<RemoteBoxname _="Test Tixi Alarm Modem"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="SECRET HEATERON 1"/>
<Alpha _="TEST+49-30-40608582"/>
<OA _="03040608582"/>
<ErrNo _="-300"/>
<ErrText _="Invalid event name"/>
<P1 _="1"/>

</DoOn>

Error event message generated from an incoming SMS of this format: SECRET HEATERON
1

<DoOn _="System/SMSInvalidEvent ">
<Event _="HEATERON"/>
<Password _="SECRET"/>
<OA _="+491717959463"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="SECRET HEATERON 1"/>
<Alpha _="CON"/>
<ErrNo _="-300"/>
<ErrText _="Invalid event name"/>
<P1 _="1"/>

</DoOn>

Error event message generated from a received POP3 email with this subject:
SECRET HEATERON 1

<DoOn _="System/POPInvalidEvent ">
<Event _="HEATERON"/>
<Password _="SECRET"/>
<OA _="support@tixi.com"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="SECRET HEATERON 1"/>
<Alpha _="Tixi Support"/>
<ErrNo _="-300"/>
<ErrText _="Invalid event name"/>
<P1 _="1"/>

</DoOn>

TiXML Reference Manual

 177

In case the message password is wrong, a predefined event is triggered that allows
notification of the fault to be given and enables the tracking of intrusion attempts.

Event created on invalid password

Syntax:
<DoOn _="System/TixiInvalidPassword">
…
or
<DoOn _="System/SMSInvalidPassword">
…
or
<DoOn _="System/SMSInvalidPassword">

<Event _="EventName"/>
<Password _="Password"/>
<Alpha _="SenderAlias"/>
<OA _="OA"/>
<Time _="ReceiveTime"/>
<RemoteSerialNo _="RemoteSerialNo"/>
<RemoteBoxnumber _="RemoteBoxnumber"/>
<RemoteBoxname _="RemoteBoxname"/>
<Text _="MessageText"/>
<P1 _="ValuesOfParameter1"/>
<P2 _="ValuesOfParameter2"/>
<P3 _="ValuesOfParameter3"/>
<P4 _="ValuesOfParameter4"/>
<P5 _="ValuesOfParameter5"/>
<P6 _="ValuesOfParameter6"/>
<P7 _="ValuesOfParameter7"/>
<P8 _="ValuesOfParameter8"/>
<P9 _="ValuesOfParameter9"/>
<P10 _="ValuesOfParameter10"/>
<ErrNo _="ErrNo"/>
<ErrText _="ErrorText"/>

</DoOn>

Description:
Structure of the event created by an incoming message which contains an invalid password.
This event corresponds to a DoOn event message. Note that an event handler of that name
must exist.

Note: If no Def_Message user is configured in the AccRights database this system event will
always be processed!

Elements:
EventName:

Event name parsed from received message text.
Password:

Password parsed from received message text.
SenderAlias:

Address of the sender (Express-E-Mail) or alphanumerical representation of the
originating address if any stored in the chip card (SMS) or alias name of sender (email).

TiXML Reference Manual

 178

.OA:

Originating address (callerID) received from telephone network (Express-E-Mail, SMS)
or sender address (from field) parsed from received message header (email).

ReceiveTime:

 Time stamp received from GSM network (SMS) or Time stamp indicating when the
 message was received (Express-E-Mail, email).
RemoteSerialNo:

The serial number of the Tixi Device, which sends the message. (Express-E-Mail only)
RemoteBoxnumber:

The phone number of the sending Tixi Device, as defined in the USER database (see
chapter 3.2). (Express-E-Mail only)

RemoteBoxname:

The name of the sending Tixi Device, as defined in the USER database (see chapter
3.2). (Express-E-Mail only)

MessageText:

The text from the ‘Subject’ line of the received message (email, Express-E-Mail) or
content of the message (SMS).

P1...P10(optional)

Value of the parameter delivered by the message if any.
ErrNo:

Numerical representation of the processing error.
ErrorText:

Textual representation of the processing error.

Example:
Event message created by an incoming Express-E-Mail of this format: TRY HEATER_ON 1 in
case TRY is not the correct password:

<DoOn _="System/TixiInvalidPassword">
<Event _="HEATER_ON"/>
<Password _="TRY"/>
<RemoteSerialNo _="12345"/>
<RemoteBoxnumber _="+49-30-40608582"/>
<RemoteBoxname _="Test Tixi Alarm Modem"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="TRY HEATER_ON 1"/>
<Alpha _="TEST+49-30-40608582"/>
<OA _="03040608582"/>
<P1 _="1"/>

</DoOn>

TiXML Reference Manual

 179

Event message created by an incoming SMS of this format: TRY HEATER_ON 1 in case TRY
is not the correct password:

<DoOn _="System/SMSInvalidPassword">
<Event _="HEATER_ON"/>
<Password _="TRY"/>
<OA _="+491717959463"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="TRY HEATER_ON 1"/>
<Alpha _="CON"/>
<P1 _="1"/>

</DoOn>

Event message created by a received POP3 email with this subject:
 TRY HEATER_ON 1 in case TRY is not the correct password:

<DoOn _="System/POPInvalidPassword">
<Event _="HEATER_ON"/>
<Password _="TRY"/>
<OA _="support@tixi.com"/>
<Time _="01/07/20,08:56:33+08"/>
<Text _="TRY HEATER_ON 1"/>
<Alpha _="Tixi Support"/>
<P1 _="1"/>

</DoOn>

9.3.3 Receiving Express-E-Mail
Tixi Alarm Modem can only process uncompressed Express-E-Mails. If you use a Tixi-Mail
Box with “Tixi Server" Application to send an Express-E-Mail to the Tixi Alarm Modem, you
have to disable the compression manually:

The compression can be disabled in the tixisvr.ini file (located: c:\TixiMail\Tixisvr\tixisvr.ini).
Use a text editor (e.g. “Notepad") to edit the file (close Tixi Server first).

Change the line CompressTixiMail=CompressOn in the [TixiMailBox] section of the
file to CompressTixiMail=CompressOff.

Tixi Alarm Modems are sending uncompressed Express-E-Mail by default.

9.3.4 Receiving SMS (GSM and PSTN)
To process incoming SMS with a Tixi Alarm Modem GSM the SIM card of the modem must
not contain any read or unread SMS.

Several SMS-providers are using different character sets and special characters are
converted unexpected. Therefore we recommend using EventHandler names without special
characters.

Receiving SMS on PSTN is not supported with all telephone providers.

9.3.5 Collecting Internet emails (POP3)
To process incoming POP3 emails, the Tixi Device has to collect them first.
Make sure that the POP3 details are configured in the ISP database (Chapter 4.7)

TiXML Reference Manual

 180

This simple EventHandler will do the job:

Database path: /EVENTS/EventHandler

<POP3>
<POP3Query/>

</POP3>

The Tixi Device will only receive messages with matching password.

A good solution can be implemented by combining the POP3 query event with the scheduler.
Following example will collect emails every 15 minutes.

Database path: /SCHEDULE/Scheduler

<POP3 _="POP3">
<Minute _="0,15,30,45"/>

</POP3>

9.3.5.1 Email filter

The Tixi Device is able to filter email messages to shorten online time, skip spam messages
and to share a single POP3 account with other Tixi Devices.
Therefore a user defined filter word can to be included at the end of the email subject or (if
“Lines” are specified) within the message body. See chapter 3.5 for details.

If a filter is specified, the modem will ignore all messages without this filter word, and even
leave them on the server.

9.3.6 Example

9.3.6.1 Event Handler
The typical application for the use of incoming message is assumed to be the following:

1. Log the message.

2. Set a variable.

3. Send a reply.

As described above, there are a number of events created automatically by an incoming
message. Each must be handled by an event handler.

For the error cases, the following actions are assumed to be done:

Invalid Password:
Log the incoming message along with sender address.

Invalid event:
1. Log the incoming message.

2. Send a notification on the problem.

To process the error events, insert a section as follows into the EventHandler group of the
EVENT database. The example assumes that the Switch_0 as well as the
AnswerOnXXXError message jobs have been configured.

TiXML Reference Manual

 181

Event handler for the
Express-E-Mail error
cases

Event handler for the
SMS error cases

Event handler for the
POP3 error cases

Note: The InvalidPassword and the InvalidEvent sections are contained in a
special sub-section SYSTEM of the EVENT database.

Database path: /EVENTS/EventHandler
<EventHandler>

<HEATER_ON>
<Log _="IncomingMessage">
 <Annotation ="Incoming message"/>
 <Sender _="®~/Alpha"/>
 <OA _="®~/OA"/>
 <Time _="®~/Time"/>
</Log>

 <Set _="/Process/C42/Q/P4" value="1"/>
<SendMail _="MessageJobTemplates/Switch_0"/>

</HEATER_ON>
<System>

<TixiInvalidPassword>
<Log _="FailedIncomingCall"/>

<Annotation _="ExpressEMail with invalid password
received"/>
<Sender _="®~/Alpha"/>
<Time _="®~/Time"/>
<Text _="®~/Text"/>

</Log>
</TixiInvalidPassword>
<TixiInvalidEvent>

<Log _="FailedIncomingCall"/>
<Annotation _="Express-E-Mail with invalid event
received"/>
<Sender _="®~/Alpha"/>
<Time _="®~/Time"/>
<Text _="®~/Text"/>

</Log>
<SendMail _="MessageJobTemplates/AnswerOnTixiError"/>

</TixiInvalidEvent>
<SMSInvalidPassword>

<Log _="FailedIncomingCall"/>
<Annotation _="SMS with invalid password received"/>
<Sender _="®~/OA"/>
<Time _="®~/Time"/>
<Text _="®~/Text"/>

</Log>
</SMSInvalidPassword>
<SMSInvalidEvent>

<Log _="FailedIncomingCall"/>
<Annotation _="SMS with invalid event received"/>
<Sender _="®~/OA"/>
<Time _="®~/Time"/>
<Text _="®~/Text"/>

</Log>
<SendMail _="MessageJobTemplates/AnswerOnSMSError"/>

</SMSInvalidEvent>
<POPInvalidPassword>

<Log _="FailedIncomingCall">
<Annotation _="POP3 email with invalid password
received"/>
<Sender _="®~/OA"/>
<Time _="®~/Time"/>
<Text _="®~/Text"/>

</Log>
</POPInvalidPassword>

TiXML Reference Manual

 182

<POPInvalidEvent>
<Log _="FailedIncomingCall">

<Annotation _="POP3 email with invalid event
received"/>
<Sender _="®~/OA"/>
<Time _="®~/Time"/>
<Text _="®~/Text"/>

</Log>
<SendMail _="MessageJobTemplates/AnswerOnPOP3Error"/>

</POPInvalidEvent>

</System>
</EventHandler>

Note: If the message(s) created by this event handler should be sent to the sender of the
triggering message, the sender parameter (Alpha for Express-E-Mail or OA for
SMS/POP3) is only valid for messages which are sent by this specific event handler.

9.3.6.2 Message Job Templates for the answer messages
For the answer messages, separate message job templates must be created. If the address
of the sender is not known at the time of configuration, the sender number can be read from
the event message generated by the messages.

Database path: /TEMPLATE/MessageJobTemplate

Express-E-Mail:
<MessageJobTemplates>

<AnswerOnHeaterOn _="Express-Email">
<Recipient _="®~/Alpha"/>
<Body _="Heater is On"/>

</AnswerOnHeaterOn>
<AnswerOnError _="Express-Email">

<Recipient _="®~/Alpha"/>
<Body _="Command ®~/Event; could not be processed"/>

</AnswerOnError>
</MessageJobTemplates>

SMS:
<MessageJobTemplates>

<AnswerOnHeaterOn _="GSMSMS">
<Recipient _="®~/OA"/>
<Body _="Heater is On"/>

</AnswerOnHeaterOn>
<AnswerOnError _="GSMSMS">

<Recipient _="®~/OA"/>
<Body _="Command ®~/Event; could not be processed"/>

</AnswerOnError>
</MessageJobTemplates>

TiXML Reference Manual

 183

POP3:
<MessageJobTemplates>

<AnswerOnHeaterOn _="SMTP">
<Recipient _="®~/OA"/>
<Body _="Heater is On"/>

</AnswerOnHeaterOn>
<AnswerOnError _="SMTP">

<Recipient _="®~/OA"/>
<Body _="Command ®~/Event; could not be processed"/>

</AnswerOnError>
</MessageJobTemplates>

Note: The sender address is read from the created event. In the Message Job Template, it
is represented by the ®~/Alpha characters (Express-E-Mail) or the
®~/OA characters (SMS, POP3) which are a reference to the parameter
provided by the event message.

9.4 Configuration via email
Additional to changing variables via incoming messages (chapters above) it is possible to
replace complete databases e.g. the AddressBook via incoming email or Express-E-mail.
The necessary event handler command “SetConfig” is explained in chapter 3.7.1.

The Tixi Device requires special message syntax, to detect and process the new database
content.

At first the subject line of the message has to contain the password (chapter 9.5) and the
event handler name with SetConfig command, e.g.:

The message body has to containt the databases in following syntax:
Message body syntax – edit databases

Syntax:
 <D>
 <SetConfig _=”DATABASE”>
 <Group>
 Data…
 </Group>
 </SetConfig>
 </D>
Description:

Message body structure to change databases via incoming email or Express-Email.

Elements:
DATABASE:

 Name of database to edit, e.g. USER, ISP, PROCCFG. See chapter 12 for
 database names.

SECRET LOADDATABASE

Password Event Handler

TiXML Reference Manual

 184

Group:

 Groups inside the database, e.g. database TEMPLATE may contain groups
 “AddressBook”, “MessageJobTemplates” and “UserTemplates”

Example:
Email message body to change the location settings:

 <D>
 <SetConfig _="USER">
 <Location>
 <CountryPrefix _="00"/>
 <CountryCode _="49"/>
 <AreaPrefix _="0"/>
 <AreaCode _="30"/>
 <LocalDialPrefix _=""/>
 <LongDialPrefix _=""/>
 <PhoneNumber _="0304019008"/>
 <InternalDialPrefix _=""/>
 <ExtensionNumber _=""/>
 <DialRules _="Tone,NoWaitForDialTone"/>
 </Location>
 </SetConfig>
 </D>

Email message body to change the AddressBook:
 <D>
 <SetConfig _="TEMPLATE">

 <AddressBook>
 <MySelf>
 <Email _="user@domain.com"/>
 </MySelf>
 <Receiver>
 <Email _="demo@tixi.com"/>
 </Receiver>
 </AddressBook>

 </SetConfig>
 </D>

9.5 Authentication
To protect the message access to the device, one or more passwords must be defined.
There are two ways to configure a password protection:

• Simple password.

• Sender data (CallerID, email alias) depending.

The simple method defines a password for all senders independently of the sender device.
When using the other variant, the password is valid in conjunction with a specific originating
address (callerID, email alias) only. For originating address protection (callerID check) with
SMS or Express-E-Mail the telephone provider and/or PBX has to support callerID
presentation (CLIP). Ask your local telephone company for details.

The AccRights have to be configured in the USER database.

Database path: /USER/AccRights

TiXML Reference Manual

 185

Remote Control access protection
Syntax:
 <User>

 <Def_Message Plain="PlainPwd" Group="UserGroup"/>
 <OA_nnn Plain="PlainPwd" Group="UserGroup"/>
 <Alias Plain="PlainPwd" Group="UserGroup"/>

 </User>
Description:

Enables incoming message access to the Tixi Device by setting up a password
protection. Either a sender-independent password can be used or one that is valid in
conjunction with a specific originating address only. See chapter 3.6 for more details.

Elements:
PlainPwd:
 The password required for message access. Maximum 25 characters.

UserGroup:
 Name of a group with service "Message" (see chapter 3.6).

OA_nnn:

Originating address (callerID, email address) that should be authorized to access the
Tixi Device, where nnn consists of numbers only (SMS, Express-E-Mail) or letters
(email), thus any hyphens and other characters than numbers (or letters), must be
removed.

Alias:
Email alias name that should be authorized to access the Tixi Device. Space characters
will be removed.

Example:
Configure a non-sender aware password protection with the password SECRET:
 [<SetConfig _="USER" ver="y">
 <AccRights>
 <Groups>
 <MessageGroup>
 <Message AccLevel="1"/>
 </MessageGroup>
 </Groups>
 <User>
 <Def_Message Plain="SECRET" Group="MessageGroup"/>
 </User>
 </AccRights>
 </SetConfig>]

Configure protection for a sender "+49172123456789" and the password SECRET:
 [<SetConfig _="USER" ver="y">
 <AccRights>
 <Groups>
 <MessageGroup>
 <Message AccLevel="1"/>
 </MessageGroup>
 </Groups>
 <User>
 <OA_49172123456789 Plain="SECRET" Group="MessageGroup"/>
 </User>
 </AccRights>
 </SetConfig>]

TiXML Reference Manual

 186

Configure Protection for an email sender with the alias name 'Tixi Support' and the password
SECRET:
 [<SetConfig _="USER" ver="y">
 <AccRights>
 <Groups>
 <MessageGroup>
 <Message AccLevel="1"/>
 </MessageGroup>
 </Groups>
 <User>
 <TixiSupport Plain="SECRET" Group="MessageGroup"/>
 </User>
 </AccRights>
 </SetConfig>]

If alias name can not be found within user list, email address will be checked too:
Protection for an email sender without alias but with email address Support@tixi.com and the
password SECRET:
 [<SetConfig _="USER" ver="y">
 <AccRights>
 <Groups>
 <MessageGroup>
 <Message AccLevel="1"/>
 </MessageGroup>
 </Groups>
 <User>
 <OA_Supporttixicom Plain="SECRET" Group="MessageGroup"/>
 </User>
 </AccRights>
 </SetConfig>]

TiXML Reference Manual

 187

10 Tixi Device and PLC / Meter / Fieldbus Operation
The Tixi Device is not only to be used on its own, but even in conjunction with PLC devices,
meters and other kinds of controllers. As the Tixi Device got most common protocols already
implemented, connecting it to a PLC or meter is very simple.

Once the connection is established physically via RS232, RS422/485, MPI or M-Bus
interface, the Tixi Device system properties may be enhanced by any variable of the external
device. The Tixi Device will then be able to read the variable values, use them to trigger
events, log the values and send the logfiles. Based on logical instructions or incoming
messages, the Tixi Device may even write into devices.

There's a variety of systems to be supported by the Tixi Device, which got the respective
protocols already implemented. These PLCs or meters may be connected to the Tixi Device
without any change in programming or configuration, just by means of their communication
interface:

• Mitsubishi ALPHA2, MELSEC FX

• Siemens Simatic S7-200, S7-300/400 (MPI)

• VIPA (GreenCable)

• Moeller Easy 400/500/600/700/800/MFD, Easy Control, XC/XVC

• SAIA S-Bus

• Carel Macroplus

• Modbus RTU

• Tixibus

• M-BUS

• and much more…

Detailed information on configuratioon and usage of Tixi along with PLCs and other devices
can be found within the Tixi PLC Manual, which is available on our website.

TiXML Reference Manual

 188

11 Addresses of serial interfaces and I/Os

Tixi Alarm Modems
Tixi Alarm Modem Device

Description GSM GSM GSM GSM V.90 / GSM / ISDN
Product Code HG121 / HG421 HG127 / HG427 HG141 / HG441 HG147 / HG447 HG425-2S0
Serial
interfaces

1xRS232-F,
1xRS232-M

1xRS232-F,
1xRS232-M

1xRS232-F,
1xRS422/485

1xRS232-F,
1xRS422/485

1xRS232-F,
1xRS232-M

I/Os - 2/3 + 10V AI - 2/3 + 10V AI 2/1 + 10V AI + 2 S0

Systempath:
RS232-1 COM1 COM1 COM1 COM1 COM1
RS232-2 COM2 - - - COM2
RS422/485 - COM2 COM2 COM2 -
Inputs - /Process/MB/IO/I/Px - /Process/MB/IO/I/Px /Process/MB/IO/I/Px
Outputs - /Process/MB/IO/Q/Px - /Process/MB/IO/Q/Px /Process/MB/IO/Q/Px
Analog input - /Process/MB/A/AI/P0 - /Process/MB/A/AI/P0 /Process/MB/A/AI/P0
S0-interface - - - - /Process/I3e/AI/Px

Tixi Alarm Modems

Tixi Alarm Modem Device
Description GSM GSM GSM GSM
Product Code HG423-M25/60/100 HG443-M25/60/100 HG171 / HG471 HG176 / HG476
Serial
interfaces

1xRS232-F,
1xRS232-M

1xRS232-F,
1xRS422/485

1xRS232-F,
1xMPI

1xRS232-F,
1xMPI

I/Os 2/1 + 10V AI 2/1 + 10V AI - 2/2 + 10V AI

Systempath:
RS232-1 COM1 COM1 COM1 COM1
RS232-2 COM2 - COM2 COM2
RS422/485 - COM2 - -
M-Bus COM3 COM3
Inputs /Process/MB/IO/I/Px /Process/MB/IO/I/Px - /Process/MB/IO/I/Px
Outputs /Process/MB/IO/Q/Px /Process/MB/IO/Q/Px - /Process/MB/IO/Q/Px
Analog input /Process/MB/A/AI/P0 /Process/MB/A/AI/P0 - /Process/MB/A/AI/P0

Tixi Data Gateways

Tixi Data Gateway Device
Description LAN / WLAN LAN / WLAN LAN / WLAN LAN / WLAN LAN / WLAN
Product Code HE121 / HE421 / HW 121

/ HW421
HE127 / HE427 / HW127 /
HW427

HE141 / HE441 / HW141 /
HW441

HE147 / HE447 / HW147
/ HW447

HE425-2S0, HW425-2S0

Serial
interfaces

1xRS232-F,
1xRS232-M

1xRS232-F,
1xRS232-M

1xRS232-F,
1xRS422/485

1xRS232-F,
1xRS422/485

1xRS232-F,
1xRS232-M

I/Os - 2/3 + 10V AI - 2/3 + 10V AI 2/1 + 10V AI + 2 S0

Systempath:
RS232-1 COM1 COM1 COM1 COM1 COM1
RS232-2 COM2 - - - COM2
RS422/485 - COM2 COM2 COM2 -
Inputs - /Process/MB/IO/I/Px - /Process/MB/IO/I/Px /Process/MB/IO/I/Px
Outputs - /Process/MB/IO/Q/Px - /Process/MB/IO/Q/Px /Process/MB/IO/Q/Px
Analog input - /Process/MB/A/AI/P0 - /Process/MB/A/AI/P0 /Process/MB/A/AI/P0
S0-interface - - - - /Process/I3e/AI/Px

Tixi Data Gateways

Tixi Data Gateway Device
Description LAN / WLAN LAN / WLAN LAN / WLAN LAN / WLAN
Product Code HE423-M25/60/100 /

HW423-M25/60/100
HE443-M25/60/100 /
HW443-M25/60/100

HE171 / HE471 / HW171 /
HW471

HE176 / HE476 / HW176 /
HW476

Serial
interfaces

1xRS232-F,
1xRS232-M

1xRS232-F,
1xRS422/485

1xRS232-F,
1xMPI

1xRS232-F,
1xMPI

I/Os 2/1 + 10V AI 2/1 + 10V AI - 2/2 + 10V AI

Systempath:
RS232-1 COM1 COM1 COM1 COM1
RS232-2 COM2 - COM2 COM2
RS422/485 - COM2 - -
M-Bus COM3 COM3
Inputs /Process/MB/IO/I/Px /Process/MB/IO/I/Px - /Process/MB/IO/I/Px
Outputs /Process/MB/IO/Q/Px /Process/MB/IO/Q/Px - /Process/MB/IO/Q/Px
Analog input /Process/MB/A/AI/P0 /Process/MB/A/AI/P0 - /Process/MB/A/AI/P0

TiXML Reference Manual

 189

IO-Extensions
Device
Description

Tixi Alarm Modem IO-Extension,
Tixi Data Gateway IO-Extension

Product Code XP84D XP84DR XP88AD
I/Os 8/4 8/4 8/0 + 8x10V AI

Systempath:
Cx addresses C40, C42, C44, C46,

C48, C4A, C4C, C4E
C40, C42, C44, C46, C48,
C4A, C4C, C4E

C40, C42, C44, C46, C48,
C4A, C4C, C4E

Inputs /Process/C4x/I/Px /Process/C4x/I/Px /Process/C4x/I/Px
Outputs /Process/C4x/Q/Px /Process/C4x/Q/Px -
Analog input - - /Process/C4x/AI/P0

11.1 Bit / Byte / Word / Dword addressing of I/Os
The bit values of the Tixi Device I/Os can also be addresses as bytes, words and dwords.
Bit / Byte / Word / Dword Addressing
Syntax:

/Process/[ModuleAddress]/[PortGroup]/[PortType][Range]/P[PortIndex]
Description:
Addressing the input and output ports of a Tixi Device. Port bits can be addressed in different
ways. It is possible to address a single port or sequences of ports. Assuming a 32-bit port,
the bits can be addressed in the following ways:

Single Bit Access:example: /Process/MB/I/IO/P4

Byte Access: example: /Process/MB/IO/IB/P2

Word Access: example: /Process/MB/IO/IW/P1

Double Word Access: example /Process/MB/IO/ID/P0

Elements:
The port is addressed by a slash divided path notation:
Process: Process sub system path
ModuleAddress:
 MB Tixi Device mainboard

C40...C4E HEX number corresponds to the setting of the address jumper of the
 extension modules.

PortGroup (only on ModuleAddress "MB"):
IO Group of digital in- and outputs

PortType:
PortType DataType Value Range
I Input Bitfield 0,1
IB Input Byte 0..255
IW Input Word 0...65.535
ID Input DWord 0...4.294.967.295
Q Output Bitfield 0,1
QB Output Byte 0..255
QW Output Word 0...65.535

0

0 1

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3

TiXML Reference Manual

 190

QD Output DWord 0...4.294.967.295

PortIndex:
0...n Zero based index number of the item in the port.

Examples:
5. bit of the input bit field of the module with the address 40.

/Process/C40/I/P4

TiXML Reference Manual

 191

12 System Properties
This appendix lists the available system properties of the Tixi Device which can be read or
written by the Get and Set commands. The tables contain the single system properties. The
complete path to address a system property must be combined by the headline of the table
and the name of the system property separated by a slash character.

For Example:
 To address the serial number simply write:

/SerialNo (table has no headline).

To address the version number of the firmware write:
/OEM/Firmware/Version

It’s possible to include the system properties into message text:
e.g.:
<L _="Firmware-Version: ®/OEM/Firmware/Version"/>

Name Type Read

only
Description

BoxMode String yes Current system mode
Modem
TiXML

HardwareID String yes Device hardware code
PNP_String String yes Plug and Play string of the device.

for example:
TIX2027\02582501\MODEM\AMB3100\Tixi Data Gateway LAN

FeatureList String yes List of the features (services) of the product.
for example:

Modem Mode
Express-E-Mail Send
Remote Modem-Mode
Script Send
Job Result Processor

Components String yes List of components of the device.
for example:

RTC Modem0 FlashOnboard C8
SerialNo String yes Serial Number of the device.

for example:
00238801

FreeFileSize Uint32 yes Free memory in file system (Bytes)
LocalIPAddr String yes IP address of the modem (assigned during PPP connection)

/EEProm
Name Type Read

only
Description

GM String yes Interface address of GSM modem, copied from configuration
Pin1 String Yes PIN1 for GSM SIM card, copied from configuration
Pin2 String yes PIN2 for GSM SIM card, copied from configuration

Headline Name from
Table

TiXML Reference Manual

 192

/Ethernet
Name Type Read

only
Description

AssignedIP String yes IP address assigned via DHCP or configuration
SubnetMask String yes SubnetMask assigned via DHCP or configuration
Gateway String yes Gateway assigned via DHCP or configuration
DNS_1 String yes First DNS server assigned via DHCP or configuration
DNS_2 String yes Second DNS server assigned via DHCP or configuration
Link Uint16 yes Active link speed of ethernet interface. “0”, “10” or “100” (MBit/s)
LinkState Bit yes Status of ethernet link. 0=disconnected, 1=connected
MAC String yes Network interface MAC address

/Firmware
Name Type Read

only
Description

Version String yes Version number of the firmware.
for example:

3.06.60.000
Date String Yes Date of build

/GSM
Name Type Read

only
Description

Reg Uint16 yes Shows network registration state
Reg_Text String yes Verbose network registration state
Operator String yes Name of active GSM operator
Quality Uint16 yes GSM signal strength, see ETSI GSM 05.08

0: -113dBm or less
1: -111 dBm
2-30: -109 to -53 dBm
32: -51dBm or greater
99: not known or not detectable

BitErrorRate Uint16 yes as RXQUAL values, see ETSI GSM 05.08
Account Uint16 yes Credit left on SIM card (Germany: €€cc)
DaysLeft Uint16 yes Days until SIM card expiration
State String Yes GSM error state, e.g. “missing SIM Card”

/GSM/FD
GSM SIM provider phonebook entries in syntax <Contact_name _=”phone_number”/>.
Special characters in contact names will be replaced by underscore.

/GSM/SM
GSM SIM phonebook entries in syntax <Contact_name _=”phone_number”/>.
Special characters in contact names will be replaced by underscore.

/Hardware/Modules
Name Type Read

only
Description

RTC String yes RTC type,
not defined if no RTC is present.

for example: RTC4513
Jumper String yes Jumper to prevent firmware upload,

not defined if not present.
Modem0 String yes Type of Modem #0,

not defined if not present.

TiXML Reference Manual

 193

for example: HG421
Modem1 String yes Type of Modem #1, not defined if not present.
GsmModule String yes Type of GSM modem, if present
FlashOnboard String yes Flag indicating whether flash is on the main board or not,

undefined if no flash is present, 'x' else.
FlashExtension String yes Flag indicating whether a flash extension board is present,

undefined if no flash extension board is present, 'x' else.
PowerSupply String yes Hardware version of the Tixi Device (1 or 2Ampere)

 for example: 2.0A
COMx String yes Interface type of COMx
MBAIO String yes Type of analog I/O module
MBDIO String yes Type of digital I/O module
Ethernet String yes Network controller chip type
C4x String yes extension module (C42,C44,C44,C46,C48,C4a,C4c,C4e)

/Hardware/RAM
Name Type Read

only
Description

Attributes String yes Code describing the attributes of the system RAM,
not defined if no information is present.
for example:

14680064
Type String yes Code describing the Type of the system RAM,

not defined if no information is present.
Size String yes Detected size of the system RAM in bytes,

not defined if no information is present.
for example:

524288-> 512 KByte

/Hardware/ROM
Name Type Read

only
Description

Attributes String yes Code describing the attributes of the system ROM,
not defined if no information is present.
for example: 0

Type String yes Code describing the type of the system ROM,
not defined if no information is present.

Size String yes Detected size of the system ROM in bytes,
not defined if no information is present.

/Hardware/FileSystem
Name Type Read

only
Description

Attributes String yes Code describing the attributes of the system RAM,
not defined if no information is present.
for example:

0
Type String yes Code describing the type of the system RAM,

not defined if no information is present.
Size String yes Detected size of the system RAM in bytes,

not defined if no information is present.
for example:

262144 -> 2 MByte

TiXML Reference Manual

 194

/LogCounter (dynamic)
Name Type Read

only
Description

Logfilename Uint16 no Number of entries in the specified Logfile.
Value can be changed by “set” command, new entries will be added.

/OEM
This sub-tree depends on the product declaration defined by the vendor of the device.

/Process/Program
Name Type Read

only
Description

Mode String no Processing Mode of the program:
Run...Processing is running
Stop..Processing is stopped.

/Process/MB
Name Type Read

only
Description

FirstCycle Uint16 no Predefined process variable (used to detect power on situation):
1...The first processing cycle runs.
0...The first processing cycle is done.

PollButton Uint16 yes Status of the Service Button. 1=pressed, 0=not pressed
SignalLED Uint16 no Status of the “Signal” LED. Range 0 – 27 (see chapter 6.8)
ModemOffHook Uint16 yes State of the modem

0: On hook
1: Off hook (outgoing call)
2: Off hook (incoming call)

TransMode Uint16 yes TransMode state:
0: no TransMode established
1: TransMode to COM1 established
2: TransMode to COM2 established

MaxCycleTime Uint16 yes Longest cycle time
CycleTime Uint16 yes Actual cycle time

/Process/PV (dynamic properties)
Values of the process variables defined by the PROCCFG/ProcessVars

/Process/MB (dynamic properties)
Values of the unnamed process variables defined by the main board (HM,HG,HD,HF).

/Process/Cn (dynamic properties)
Values of the unnamed process variables defined by the installed extension module

/Process/Auxn (dynamic properties)
Values of the process variables defined in PROCCFG/External (without name or BusId).

/Process/Busn (dynamic properties)
Values of the process variables defined in PROCCFG/External with BusId.

/TIMES
Name Type Read Description

TiXML Reference Manual

 195

only
TIME String yes Current system time of the day:hour:minutes:seconds
DATE String yes Current system date year/month/day
RFC822Date String yes Current system date and time in the email format according to

RFC 822.
for example: Fri,13 Jul 01 13:56:00 +0100

PowerOffTime String yes System time of the last power off event with (resolution of 1
minute.)
year/month/day/hours/minutes/seconds

PowerOnTime String yes System time of the last power on event with
year/month/day/hours/minutes/seconds

DAYOFWEEK String yes Sunday,Monday, …Saturday
DAYOFWEEKNO String yes 0-6
YYYY_MM_DD String yes Current system date year_month_day.
HH_MM_SS String yes Current system time of the day hour_minutes_seconds.
HEXDATE String yes Current system time in seconds since 1.1.1970 as hex value.

/WLAN
Name Type Rea

d
only

Description

AssignedIP String yes IP address assigned via DHCP or configuration
SubnetMask String yes SubnetMask assigned via DHCP or configuration
Gateway String yes Gateway assigned via DHCP or configuration
DNS_1 String yes First DNS server assigned via DHCP or configuration
DNS_2 String yes Second DNS server assigned via DHCP or configuration
Rate String yes Active link speed of WLAN interface., e.g.“54 Mbps”
Link Uint16 yes Active link speed of WLAN interface (MBit/s).
LinkState Uint16 yes Status of WLAN link. 0=disconnected, 1=connected
TxPower String yes WLAN transmission power
MAC String yes WLAN interface MAC address
SSID String yes Service Set Identifier of connected access point
BSSID String yes Basic Service Set Identifier of connected access point
SNR String yes WLAN signal to noise ratio, e.g. “48/96”
Reason String yes WLAN error reason

/EVENT (Data Base)
See 'EVENT' database description.

/ISP (Data Base)
See 'ISP' database description.

/LOG (Data Base)
See 'LOG' database description.

/PROCCFG (Data Base)
See 'PROCCFG' database description.

/SCHEDULE (Data Base)
See 'SCHEDULE' database description.

/TEMPLATE (Data Base)
See 'TEMPLATE' database description.

TiXML Reference Manual

 196

/USER (Data Base)
See 'USER' database description.

TiXML Reference Manual

 197

13 Project structure and connections

13.1 Event Handler, Scheduler

TiXML Reference Manual

 198

13.2 Event States, External, ProcessVars, System-IOs

13.3 MessageJobTemplates, UserTemplates, AddressBook

TiXML Reference Manual

 199

13.4 Logfiles, Records, EventLogging

TiXML Reference Manual

 200

14 Firmware

14.1 Remote Firmware Update
Remote Firmware Update is only supported on Tixi Devices with SD-Card (Hx4xx).
A SD-Card with FAT16 file system must be mounted to upload the new firmware using TFTP.
The firmware file must be registered in the TFTP configuration (see Webserver TiXML
manual for more information on TFTP configuration).

[<SetConfig _="ISP" ver="y">
 <TFTP>
 <Port _="69"/>
 <Files>
 <Upload _="0:TAM_FW.BIN" acc="RW" size="1000"/>
 </Files>
 </TFTP>
</SetConfig>]

Upload the “TAM_FW.BIN” binary firmware file via TFTP using remote file name
"0:tam_fw.bin" ("0:" addresses the SD-Card).
After uploading, a [<Reset _="Update"/>] is necessary to flash the firmware.

14.2 Compatibility
The Tixi Device firmware will be updated periodically to implement new features, support
more PLCs or for bug fixing. In most cases it’s not necessary to update your projects after
updating the firmware.

In the past some changes have been made to the system structure to make it easier to
understand. In most cases a new firmware supports both: the old and the new structure.
Due to these changes a project written for a new firmware may not work with an older
firmware.

The following list helps you to determine if project changes are necessary:
Firmware Description
1.52.0.0 New External Format, protocol type (see PLC TiXML manual)

A new bus attribute “protocol” now contains the manufacturer and the protocol, the attribute
“type” contains just the Master/Slave mode.
Old syntax, e.g.: type="sucom,Master"
New syntax, e.g.: protocol=”Moeller,Easy 400/600” type=”Master”
TIMES-Group (chapter 12)
The Tixi Device time variables (Date, Time etc.) are moved into a new group called /TIMES.
Example:
Old path: /Date
New path: /TIMES/Date

1.60.0.184

AddressBook INet->Email (chapter 3.4)
The addressbook parameter for email addresses was renamed.
Old name: INet, New name: Email

1.64.0.172 GSMPorts activation in USER-Database (chapter 3.3)
The operationg mode of the GSM module IOs can be set via USER-Database entry.
MessageJobTemplate Tixi-> Express-Email (chapter 3.9)
The MessageJobTemplate type for Exptess-Emails was renamed.
Old name: Tixi
New name: Express-Email

1.63.0.65

Addressbook: TixiMail-> Express-Email (chapter 3.4)
The addressbook parameter for Express-Email addresses was renamed.
Old name: TixiMail
New name: Express-Email

1.63.0.59 Dial Rules T/P:N/Y -> Tone/Pulse,No/WaitForDialTone (chapter 3.2):
The dial rule parameters were renamed.
Old syntax: T:N, P:N, T:Y, P:Y

TiXML Reference Manual

 201

New syntax:
Tone,NoWaitForDialTone,
Pulse,NoWaitForDialTone,
Tone,WaitForDialTone,
Pulse,WaitForDialTone.
POP3 Flag: PbS -> POPBeforeSMTP (chapter 3.5)
The value name of the POP before SMTP parameter was changed:
Old syntax: PbS
New syntax: POPBeforeSMTP
SMTP Flag: d -> DontDelete (chapter 3.5)
The value name of the delete message parameter was changed:
Old syntax: d
New syntax: DontDelete

1.63.0.51

AddressBook: SMS_Nr -> SMS_No (chapter 3.4)
The addressbook parameter for SMS numbers was renamed.
Old name: SMS_Nr
New name: SMS_No

1.72.0.0 Handshake SUCOM -> noDTR
The handshake parameter on Bus configuration and TransMode for Moeller Easy and Mitsubishi
Alpha XL was renamed.
Old name: SUCOM
New name: noDTR

1.80.86.0 Time-Server moved from database ISP to ISP/ISP
PPP-Server moved from database ISP/ISP to ISP
CBIS moved from database ISP/ISP to ISP

1.81.0.0 HG GSM modem definition in USER-DB:
old <GSMModem _=”MB”/> (no longer allowed)
new <GSMModem _=”MB”/>

2.00.0.0 New AccRights database. Database USER/Login, USER/SMS_Login no longer supported.
New LogDefinition database. Database LOG/Logfiles, LOG/Records no longer supported.

2.1.25.0 Incoming SMS command names will be transformed to upper case, therefore all EventHandler
for SMS remote switching have to be upper case.

2.01.36.0 S0-Interface changed from “C3e” to “I3e”
2.1.39.0 External Bus parameter “mem” now specified in “bytes” (previously KB)
2.02.1.0 New ScheduleDefinition database. Database SCHEDULE/Schedule, SCHEDULE/Condition no

longer supported.
2.2.8.0 Logfile template CSV now without quotes
2.2.21.0 Tixi bus variable “S” (String) now requires “size” instead of “length”
2.2.74.0 MPI callback no longer supported
3.0 Old login database no longer supported (/USER/Login, /USER/SMS_Login)

TiXML baudrate on COM1 is fix 115200bps
MPI baudrate 19200bps no longer supported
MPI activation requires restart

3.0.1.329 CHAP Login ID without convertion (see chapter 0)

14.3 Feature History
Firmware Description
3.0.1.243 MIN/MINI/MAX/MAXI RPN instruction (see chapter 6.3.1.3)
3.0.1.264 Free process variables increased to 30 (see chapter 6)
3.0.1.272 M-Bus variables: manufacturer, primary- secondary address
3.0.1.274 Ethernet DHCP (see chapter 3.14)
3..0.1.290 Format condition (see chapter 6.5.2)
3.0.1.303 Signal-LED (see chapter 6.8)
3.0.1.308 SD-Card batch configuration (see chapter 2.5)
3.0.1.310 External variable offset
3.0.1.328 Remote firmware update (see chapter 14.1)

DoOn.exe CGI
3.0.1.336 Persistent Ethernet configuration (see chapter 3.14)

TransMode EventHandler commands (see chapter 3.7.1)
3.0.1.342 Increased performance with large external or logdefinition databases

Webserver MIME type configuration
3.0.1.362 M-Bus reset (application code)
3.0.1.366 RPN to FORTH convertion
3.0.1.370 GPS NMEA

HTTP POST

TiXML Reference Manual

 202

3.0.1.402 M-Bus auto reset
3.0.1.408 SMTP HELO Hostname configurable (see chapter 3.5)
3.0.2.2 External offset attribute
3.0.2.4 EventHandler command IfNot (see chapter 3.7.2)
3.0.2.6 Siemens Simatic S7-400 support
3.0.2.14 Beep EventHandler command (see chapter 3.7.1)
3.0.3.2 DIN 61107 / DIN EN 62056-21
3.0.4.0 WLAN support (see chapter 3.15)
3.0.6.0 GetJobs / DeleteJobs EventHandler command (see chapter 3.7.1)
3.0.6.22 GPRS CLASS C

EventHandler command "Connect" (see chapter 3.7.1)
3.0.6.32 HEXDATE system property (see chapter 12)

WriteFile EventHandler command (see chapter 3.7.1)
3.0.6.52 New default webseite
3.0.6.56 SIM phone book variables (see chapter 12)
3.0.6.60 New MPI implementation
3.0.6.62 DHCP hostname (see chapter 3.14)
3.0.6.70 Logfile options: NoSec, fillInterval, maxInterval, fillText (see chapter 4.6)

Sendmail condition (see chapter 3.7.1)
Free process variables increased to 50 (see chapter 6)

3.0.6.72 M-Bus scan
3.0.6.74 URLSend / DynDNS (see chapter 3.4 and 3.9)

SendMail/PPPCom KeepConnected (see chapter 3.7.1)
3.0.6.78 SMTP HELO hostname (see chapter 3.5)

ReadLog/IncludeLog(TXT) "rowend" parameter (see chapter 4.6)
CGI ".exe" renamed to ".cgi"
serialPPP

3.0.6.82 TFTP access to SD-Card
Viewset for reading logfiles (see chapter 2.4.6.6)

3.2.0.0 WLAN with WPA (see chapter 3.15)
3.2.0.26 CopyDatabase for complete project (see chapter 3.8)

IncludeSP for system properties tree (see chapter 3.8)
3.2.0.30 TiXML/IP Timeout adjustable
3.2.0.34 ReadLog/IncludeLog(TXT) "cols" parameter (see chapter 4.6)
3.2.0.36 MAJOR RELEASE for HE series
3.2.0.52 MAJOR RELEASE for HG/HE series

Mitsubishi MELSEC FX3U support

TiXML Reference Manual

 203

Index

® 41
1TR140 84
Access Rights 52
Account 193
AccountExpiry 46
AccountQuery 46
AccountResponse 46
Acknowledgement 58
ADD instruction 135
ADDI instruction 135
AddInfo 30, 76, 119
Addition 135
Address 190
Address Book 48
Addresses 189
Addressing Of Bits 190
Alarm Processing 5
Alpha 186
Alternative Value 42
Analog Input 152
AND instruction 120
ANDN instruction 121
Answer Message 183
APN 50
Area Code 42
Area Prefix 42
ASCII 9
AssignedIP 196
Attachment 107
Authentication 20
Automatic Reply 183
Automatic TransMode 85
Base64 93
BASE64 Attachment 107
Basis 149
Batch 39
Baudrate 85
Beep Command 67
Binary 93
Binary Log Data 61
Binary Logging 94
BinLog Command 61, 99
Bit 95, 146
Bit Address 190
Bitmask 142
Blob 146
Body 78
BOOLEAN Processing 116
Box Name 46
Box Number 46
BSSID 196
byte 95
C instruction 75

Calculating Variable Values 116
Calculation 134
Call Acceptance 46
Caller ID 85
CallerID Event 171
CardLogin 52
Carel 188
case alternative 149
Casing 189
CBIS 79
Channel 155
CHAP 21
Character set 9
CheckJobConditions 69
Checksum 77
CityRuf 79
CityRuf Number 48
Clear Command 65
Clear Logfies 39
Collecting POP3 E-Mail 180
cols 101
colsep 101
Command 10
Command Encoding 8
Command Parameters 10
Comparison Instructions 128
Compatibility 201
Condition 70, 159
config.txt 39
Confirm Command 64
Confirmation 56, 58
ConfirmID 56
Connect 69
Contacts 48
contenttype 93
Copy Value 127
CopyDatabase 77
Country Code 42
Country Prefix 42
CPY instruction 127
CRC16 35, 101
CRC32 35, 77, 101
crcText 101
CSV 35, 101
CycleTime 195
D_OFF instruction 138
D_ON instruction 138
DAND instruction 120
DANDN instruction 121
Data 159
data format 147
Data Logging 93
data type 146

TiXML Reference Manual

 204

Database Email 184
Databases 5
Day 159
Daylight Saving Time 86
DaysLeft 193
DayTime 86
Default Settings 15
Define Process Variables 113
Defining Events 55
Delay 56
Delay Command 63
DeleteJobs Command 67
Denominator 152, 155
DHCP 88, 89
Dial Rules 42
Dialing 44
Dialling Properties 42
DialRules 42
Dialup 50
Digital I/O Ports 111
Disable Alarm 112
DIV instruction 137
DIVI instruction 137
Division 137
DLDN instruction 119
DMSK instruction 141
DNS 88, 89
DNS Address 50
DNS_X 196
DOR instruction 122
DORN instruction 123
double 95
Double 146
dword 95
DXOR instruction 124
DXORN instruction 125
E instruction 73
EchoInterval 50
EchoTarget 50
EchoTimeout 50
ELSE 139
E-mail Address 48
E-mail Attachment 107
E-Mail Filter 181
Empty Logfiles 39
Enable Alarm 112
EQ instruction 130
equal 130
Error Class 30
Error Code 119
Error Codes 14
Error Frame 11
Error State 30
Error Value 30
EthernetLogin 52
Event 112

Event Condition 70
Event Handler 55
Event Log 97
Event Processing 111
Event States 112
EventLogging Database 97
exp 95, 113, 117
Exponent 95, 113, 117
Express-Email 79
Express-E-Mail (Incoming) 173
Express-E-Mail Address 48
ExtensionNumber 42
Factory Reset 15
FailedIncomingCall Log 97
Fax Number 48
Feature History 202
file 97
File System 194
Filename 69
fillInterval 35, 101
fillText 35, 101
Filter 50, 181
FIND_BIT_ADDRESS 142
Firmware 201
FirstCycle 195
Flash memory formating 15
float 95
Float 146
format 94, 147
Format 76
Formatting Logfiles 101
FORTH instruction 144
Framing 8
Frequent Event Triggering 158
FULL 18
Fullduplex 18, 85
Gain 152
Gateway 88, 89, 196
GE instruction 132
GEI instruction 132
Get Command 30
GetJobs Command 67
GPRS 46, 50, 69
GPRSPrepared 71
greater equal 132
greater than 129
GSM Credit 46
GSM Signal Strength 193
GSMModem 46
GSMSMS 79
GT instruction 129
GTI instruction 129
HALF 18
Halfduplex 18, 85
Handshake 85
Hardware 189

TiXML Reference Manual

 205

HEX format 149
Hostname 50
Hour 159
Housing 189
HTML 35, 101
HTTP Notification 82
I/O Port Processing 112
I/O Ports 111
ID 35
IF equal 139
IF instruction 70
IF not equal 139
IFEQ instruction 139
IFNE instruction 139
IfNot instruction 70
Impulse Counter 155
Include 75
IncludeLog 100
IncludeLogTXT 101
IncludeSP 76
Including Databases 77
Including Logfiles 76, 100, 101
Including system properties 76
Including Templates 75
Incoming Call 171
Incoming Message Format 172
Incoming Messages 170
IncomingCallTrigger 171
IncomingMessage Log 97
InetTime Command 66
Input Ports 144
Insertion Of Values 144
int 95
Int16 95, 146
Int32 95, 146
Int8 95, 146
InternalDialPrefix 42
Internet Access 50
Internet Time 86
Interval 56
IOs 189
IP Address 88, 89
IsdnDataChannelID 46
ISO-8859-1 9
Jacks 189
Job Generator 5, 111
Job Processing 111
JobReport Log 97
Keep Reset 15
KeepConnected 50, 56
L instruction 73
last 35
LD instruction 117
LDN instruction 118
LDS instruction 119
LE instruction 132

LEDs 189
LEI instruction 132
less equal 132
less than 129
Link 196
LinkState 196
LocalDialPrefix 42
LocalLogin 52
Location 42
Log Command 61, 98
LogCounter 195
Logfile Counter 108
Logfile Formatting 101
Logfile Size 100
Logfiles 35
Logfiles Database 93
logical alternative 148
Logical Instruction 116
Logical Instructions 117
Login 20, 185
Login Log 97
Logout 20
LongDialPrefix 42
LT instruction 129
LTI instruction 129
MAC 196
Magic Number 15
Mailserver 50
Mask 88, 89
Math Operations 134
MAX instruction 134
MaxCycleTime 195
MaxDialAttempts 46
MAXI instruction 134
maximum 134
maxInterval 35, 101
MaxRepeat 56
M-Bus 188
Message Job Template 78
Message Text 72
meterbus 95
MID instruction 140
MIME Attachment 107
MIN instruction 133
MINI instruction 133
minimum 133
Minute 159
Mitsubishi 188
MJT 78
Mobile Number 48
Modbus 188
mode 97
Mode 155
ModemOffHook 195
Moeller 188
Month 159

TiXML Reference Manual

 206

MPP instruction 127
MPS instruction 126
MRD instruction 126
MSK instruction 141
MSN 46
MUL instruction 136
MULI instruction 136
multip 30, 95
Multiplication 136
MySelf 48
NE instruction 131
NEG instruction 119
No1 85
NoDate 35, 101
noDTR 18, 85
NoId 35, 101
NoNames 35, 101
NoSec 35, 101
not equal 131
NOT instruction 118
NoTime 35, 101
Number Format 42
Numerator 152, 155
OA 186
offset 30, 95
OnButton 71
OnError Event 56
OnOK Event 56
OnTCPError 50
OnTimeout 56
Operator 193
OR instruction 122
Originating Address 186
ORN instruction 123
Output Ports 145
Overview 5
ownhost 50
Pager Number 48
PAP 21
Parameters 10, 72, 172
Parity 85
Parser 140
Password Protection 20, 52, 185
path 94
Periphery 152, 155
persistant 88
Phone Number 42
PIN 46
PLC 5, 110, 188
PollButton 195
POP3 Filter 181
POP3 Password 50
POP3 Query 180
POP3 Server 50
POP3 Username 50
POP3Query Command 65

POP-before-SMTP 50
Port 92
Power Off Delay 138
Power On Delay 138
Power Supply 189
PowerOffTime 196
PowerOnTime 196
PPP Password 50
PPP Username 50
PPP-Server 93
precision 113
Prefix 42
previous 35
Priority 56
PROCCFG 113
Process Command 62
Process Variables 113, 116
Processing Incoming Messages 170
ProcessVar 112
ProcessVars 113
Profile Priorities 167
Project Structure 198
Projects 41
Properties 30, 33
Quality 193
Range 35
Rate 152, 196
Read Logfiles 35
ReadLog Command 35
Reason 196
Receipt Message 183
Receiving Messages 170
Recipient 78
record 93
Records Database 94
Redial Attempts 46, 56
Redial Delay 46, 56
Reference 73
References 41, 144
Remote Control 109
Remote Firmware Update 201
RemoteLogin 52
RemotePhoneNumber 50
Reply Message 183
Reset 15
Reset Command 65
ResultFile 39
RFC822Date 196
Ring Buffer 39
RingCounter 46
rowend 101
rowsep 101
rowstart 101
RTSCTS 18, 85
Run 41
S instruction 74

TiXML Reference Manual

 207

S0_Sync Command 66
SAIA 188
Scale 30, 95
ScanWLAN 91
ScheduleDefinition 161
Scheduler 158
Scheduler Condition 159
Scheduler Database 159
Scheduler Example 161
ScheduleTest 162
SD-Card 39, 69
Sender 78
Sender Address 186
Sender Validation 186
Sending Logfiles 100, 101, 107
Sending Values By Message 144
SendMail Command 55, 56
Sequencer 164
SequenceTest 168
Serial Interfaces 189
Serial Port 189
ServerName 87
Set Command 33, 60
Set PLC Variable Command 146
Set Port Command 145
Set Process Variable Command 146
SetConfig Command 64
SetConfig Email 184
SetSequence 165
SetTime Command 66
Short Message Service Center 84
Siemens 188
Signal LED 157, 195
SIM Card 46
SIM phonebook 193
simpleType 146
size 93, 94
Size Of Logfiles 100
SMS 79
SMS Providers 83
SMS_Login 186
SMTP 79
SMTP Server 50
SNR 196
So Interface 155
SSID 89, 196
ST instruction 128
StartCheckSum 77
Stop 41
StopCheckSum 77
Store Value 128
String 95, 146, 151
SUB instruction 135
SUBI instruction 135
Subject 78
Subnet Mask 88, 89

SubnetMask 196
Subtraction 135
SWP instruction 127
System group 71
System Log 35, 97
System Properties 30, 33, 192
tabend 101
tabstart 101
Tag 8
tagend 101
tagstart 101
TAP 84
Templates 72
Text Line 73
Text Parser 140
TextFax 79
TFTP-Server 93
thousand delimiter 150
Time 86, 159
Time Based Processing 158
TIME instruction 137
Time Synchonisation 86
Time-Based Processing 137
Time-Bitmask 141
TimeDiff 87
TimeFormat 87
Timeout 92
TimeScale 155
TimeServer 87
TimeStamp 30
Timezone 46
Tixibus 188
TiXML 7
TiXML Mode 7
TiXML/IP 92
Tolerance 152
TransMode 85
TransMode Command 68
TransModeClose Command 68
Transparent Mode 109
Transport Type 78
Triggering Events 112, 170, 171
TxPower 196
UCP 84
Uint16 95, 146
Uint32 95, 146
Uint8 95, 146
URLSend 79
UseAlias 35, 101
User Data 46
User Name 20, 185
Username 52
UserTemplates 73
V.110 52
value 94
Value 113

TiXML Reference Manual

 208

variable format 147
Variables 111, 144, 145
Verbose Modem Answers 11
Version Number 30
ViewProperties 30, 76
Viewset 35, 101
VIPA 188
Wait For Dialtone 42
Webserver 93

Weekday 159
WEP 89
WLAN 89
word 95
WriteFile 69, 79
XML 7, 101
XONXOFF 18, 85
XOR instruction 124
XORN instruction 125

TiXML Reference Manual

 209

Notes

TiXML Reference Manual

 210

TiXML Reference Manual

 211

	1 Overview
	2 Controlling a Tixi Device
	2.1 Overview
	2.2 RS232 Communication parameters
	2.3 Communication Mode
	2.4 TiXML - Control Protocol (TiXML)
	2.4.1 Overview
	Framing
	Command Encoding
	Error Frame
	2.4.5 Error codes
	2.4.6 Commands
	2.4.6.1 Device control
	2.4.6.2 Authentication
	2.4.6.3 Event processing
	2.4.6.4 Configuration
	Process values
	Logging

	2.5 TiXML on SD-Card

	3 Main XML Databases
	3.1 Introduction
	References
	3.1.2 Time parameters

	Dialling Properties of the Location
	How the Modem dials

	Device's User Data
	Address Book
	Internet Access (ISP)
	Access rights
	Event Handler
	3.7.1 Commands
	3.7.2 Conditions
	3.7.3 System events

	 Message Text Template
	Message Job Template
	SMS Provider
	Service center for incoming SMS
	3.12 Automatic transmode
	3.13 Internet-Time synchronization
	3.14 Ethernet
	3.15 WLAN
	3.16 TiXML/IP
	3.17 Webserver, PPP-Server, TFTP-Server

	Data Logging
	4.1 LogDefinition
	LogFiles Group
	4.1.1.1 SupportLog

	Records Group

	EventLogging
	Logging commands
	Logfile memory calculation
	4.5 Reading and clearing logfiles
	Sending and formatting log reports
	4.6.1 Predefined format tags
	Sending logfiles as attachment

	Logfile Counter

	5 Remote Control
	5.1 Overview
	5.2 Remote Control of the Tixi Device
	5.3 Remote Control of an attached device

	6 Process I/O Ports and Variables
	6.1 Introduction
	Event States
	Process Variables
	6.3.1 RPN Instruction List
	Logical instructions
	6.3.1.2 Stack operations
	Comparison instructions
	Math operations
	Time instruction
	6.3.1.6 Power-on/off delay instruction
	6.3.1.7 IF instructions
	6.3.1.8 Text parser instruction
	6.3.1.9 Bit mask instruction
	6.3.1.10 FIND_BIT_ADDRESS instruction
	6.3.1.11 FORTH instruction

	6.3.2 RPN Error Codes

	6.4 Access I/Os and Variables
	Refer to variable values
	6.4.2 Read variable values
	6.4.3 Set outputs, Process- and PLC Variables

	6.5 Variable data types and formats
	6.5.1 Variable data types
	6.5.2 Variable data formats

	6.6 Analog input
	6.7 S0-Interface
	Signal LED

	Scheduler
	7.1 Configuration
	7.2 Time parameters
	7.3 ScheduleDefinition
	Testing

	8 Sequencer
	8.1 Configuration
	8.2 Changing sequences
	8.2.1 Profile priorities
	Priority >0

	8.3 Testing
	8.4 Example

	Processing incoming messages
	9.1 Introduction
	Event via incoming call (callerID)
	9.3 Event via incoming message (Express-E-Mail, SMS, Email)
	9.3.1 Event paramater generated by an incoming message
	9.3.2 System events for invalid incoming messages
	9.3.3 Receiving Express-E-Mail
	9.3.4 Receiving SMS (GSM and PSTN)
	Collecting Internet emails (POP3)
	Email filter

	9.3.6 Example
	9.3.6.1 Event Handler
	Message Job Templates for the answer messages

	9.4 Configuration via email
	Authentication

	10 Tixi Device and PLC / Meter / Fieldbus Operation
	11 Addresses of serial interfaces and I/Os
	Bit / Byte / Word / Dword addressing of I/Os

	12 System Properties
	13 Project structure and connections
	13.1 Event Handler, Scheduler
	13.2 Event States, External, ProcessVars, System-IOs
	13.3 MessageJobTemplates, UserTemplates, AddressBook
	13.4 Logfiles, Records, EventLogging

	14 Firmware
	14.1 Remote Firmware Update
	14.2 Compatibility
	14.3 Feature History

	 Index

